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Abstract

We document key stylized facts about the time-series trends and cross-sectional distributions
of artificial intelligence (AI)-powered pricing and study its implications for firm performance,
both on average and in response to monetary policy shocks. We use the online job postings
data from Lightcast to measure the adoption of AI pricing. We infer that a firm is adopting
AI pricing if it posts a job that requires AI-related skills and contains the keyword “pricing.”
At the aggregate level, the share of AI pricing jobs in all pricing jobs has increased more than
tenfold since 2010. The rise of AI pricing jobs has been broad-based, spreading across more
industries than other types of AI jobs. At the firm level, larger and more productive firms are
more likely to adopt AI pricing. Firms that adopted AI pricing experienced faster growth in
sales, employment, assets, and markups, and their stock returns are also more responsive to
high-frequency monetary policy surprises than non-adopters. We show that these empirical
observations can be rationalized by a simple model where a monopolist firm with incomplete
information about its demand function invests in AI pricing to acquire information.
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1 Introduction

Recent advances in artificial intelligence (AI) and other advanced technologies have spurred much

interest in understanding their macroeconomic impacts and related policy implications. One area

that has received less attention but is equally important is the rise of AI-powered algorithmic

pricing (henceforth, “AI pricing”). Unlike traditional price-setting methods, AI pricing algorithms

can process vast amounts of information and adapt to real-time changes in demand and supply

conditions. Recent studies have focused on the impact of AI pricing on market competitiveness

or collusion in specific industries, such as online retailing (Aparicio, Eckles, and Kumar, 2023;

Wang et al., 2023), housing rental (Calder-Wang and Kim, 2023), gasoline (Assad et al., 2024), and

pharmaceutical industries (Brown and MacKay, 2023).

Many important questions related to the rise of AI pricing remain unanswered. For example,

how rapidly has AI pricing grown over time? How widely has AI pricing been adopted? What

types of firms adopt AI pricing? How does AI pricing affect firm performance, as measured by

sales, employment, investment, and markups? And how does adopting this new pricing technol-

ogy reshape our understanding of price flexibility and monetary policy transmission? Our paper

sheds light on these important issues by (i) documenting the time-series trends, cross-industry

distributions, and key firm-level determinants of AI pricing; (ii) examining how AI pricing has

affected firm performance and its responses to monetary policy shocks; and (iii) presenting a

stylized model for understanding the economic mechanism that explains these facts.

We construct a firm-level measure of AI pricing adoption using data from Lightcast, which

covers nearly the entire universe of online job postings in the U.S. from 2010 onward. We first

identify the jobs that require AI-related skills using textual analysis, following the approach of

Acemoglu et al. (2022b). Within this category of AI-related jobs, we then search for job postings

that contain the keyword “pricing” in the job titles, the skill requirements, or the job descriptions.

If a job posting specifies both AI-related skills and pricing, then we classify it as an AI pricing

job. We aggregate all AI pricing job postings within each firm for a given period. To examine

firm-level determinants of the adoption of AI pricing and its impact on firm performance, we

merge our firm-level AI pricing data from Lightcast with the firms’ balance sheet information

from Compustat and other aggregate variables.
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We document five stylized facts about AI pricing.

1. AI pricing rose rapidly over time. The share of AI pricing jobs among all pricing jobs has

surged more than tenfold from 2010 to 2024, with the sharpest increases occurring after

2015. The rising trend of AI pricing jobs parallels that of all AI-related jobs, resulting in a

relatively stable share of AI pricing in all AI jobs. Although AI jobs account for a relatively

small share of all jobs (peaking at 0.75% in 2022), AI pricing jobs represent a much larger

share of all pricing jobs (peaking at 1.5% in 2021). Notably, while the share of AI pricing

jobs in all pricing jobs has risen sharply from 2010 to 2024, the share of pricing jobs in all

jobs has declined by about 40% during the same period, suggesting that AI pricing may

have displaced conventional pricing jobs more than one-to-one.

2. The increase in the share of AI pricing jobs after 2015 has been broad-based, spreading to

most industries. In contrast, during the same period, the increase in the share of AI-related

jobs in all jobs was concentrated in a few sectors, mainly information, manufacturing, fi-

nance and insurance, and professional and business services.

3. At the firm level, larger and more productive firms and those with higher R&D intensity

are more likely to post AI pricing jobs.

4. Firms that adopted AI pricing are also those firms that experienced faster cumulative growth

in sales, employment, total assets, and markups from 2010 to 2023. These correlations are

stronger for larger firms.

5. The stock returns of firms that adopted AI pricing are more responsive to monetary pol-

icy shocks than non-adopters. A contractionary monetary policy surprise—constructed by

Bauer and Swanson (2023) using high-frequency data based on FOMC announcements—

reduces the stock returns for adopters relative to those of the non-adopters.

To understand the economic mechanism that drives these empirical observations, we con-

struct a simple model where a monopolist firm faces incomplete information about its demand

function. The firm produces a single good at a constant marginal cost and sells the good to a

continuum of heterogeneous individuals with diverse observable characteristics. Demand is a
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high-dimensional function of these individual observables, and the firm can invest resources into

pricing technology to learn about this function. Its learning depends on two types of pricing labor:

conventional pricing and AI pricing. AI pricing labor is complementary to computing equipment

and a substitute for conventional labor. This complementarity with computing affords AI pric-

ing an economies-of-scale advantage over conventional pricing. The AI pricing technology also

entails a fixed cost, giving rise to a discrete choice of AI adoption, as observed in the data.

The model can account for several key stylized facts about the rise of AI pricing observed

in the data. Consistent with the time-series evidence, the model predicts that both the adoption

rate of AI pricing and its intensity increase over time as computing cost declines. In line with the

cross-sectional evidence, the model suggests that larger firms—those with greater revenue–are

more likely to adopt AI pricing and use it more intensively, reflecting the scale economy effects

of AI pricing. Moreover, firms with a higher share of AI pricing labor tend to have higher average

markups, since they can learn the demand function more effectively, enabling them to set their

prices closer to the full-information optimal level. Finally, our model predicts that an increase in

aggregate demand (e.g., due to monetary policy expansions) raises gross profits more for firms

that do more AI pricing. This aligns with the empirical evidence that AI pricing amplifies the

sensitivity of firms’ stock returns to monetary policy surprises.

Literature Review. Our paper makes contributions to the literature in three key areas. First, we

contribute to the emerging economics literature on artificial intelligence and algorithmic pricing.

The focus of this literature has been on how AI pricing changes firms’ pricing decisions and mar-

ket competitiveness in industrial organizations and businesses.1 Recent studies have examined

the implications of AI pricing for specific industries, including online retailing (Aparicio, Eckles,

and Kumar, 2023; Wang et al., 2023), rental (Calder-Wang and Kim, 2023), gasoline (Assad et al.,

2024), and pharmaceuticals (Brown and MacKay, 2023).2 Complementing their work, our focus

is on the adoption of AI pricing across the entire economy: We document the adoption of AI

1Theoretical and simulation works include Calvano et al. (2020), Klein (2021), Asker, Fershtman, and Pakes (2024),
Cho and Williams (2024), Brown and MacKay (2024), etc. Also, see Spann et al. (2025) for a detailed survey on various
implications and challenges of algorithmic pricing for consumers, managers, and regulators.

2Although their focus is mainly on market competitiveness or collusion outcomes due to AI pricing, most of
these studies show that prices adjust extremely frequently when AI pricing is adopted for specific industries. Using
high-frequency online retailing data, Leung, Leung, and Zhou (2023) provides valuable detailed pricing patterns and
price stickiness by online sellers, but unfortunately, cannot precisely confirm AI pricing adopters.
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pricing for the universe of US firms posting jobs online and show how such adoption affects firm

performance and aggregate policies.

Second, our work is connected to the emerging literature on the macroeconomics of the rise

of artificial intelligence. The focus is on how AI, as a new and more efficient technology, would

affect various macroeconomic objects, including the labor market (Acemoglu and Restrepo, 2018;

Bessen, 2019; Acemoglu et al., 2022b; Leduc and Liu, 2024), economic growth (Aghion, Jones,

and Jones, 2019; Jones, 2023; Acemoglu, 2024), income inequality (Korinek and Stiglitz, 2018),

market concentration (Tambe et al., 2020; Firooz, Liu, and Wang, 2025), among others. Firm-level

surveys, such as the Annual Business Survey by the Census, suggest that the usage of AI and

other advanced technologies has been heavily skewed toward large firms (Acemoglu et al., 2022a;

McElheran et al., 2024). Another closely related focus is on how firms use data in production and

how it matters for the aggregate economy (Jones and Tonetti, 2020; Veldkamp and Chung, 2024;

Baley and Veldkamp, 2025). Our findings show that AI pricing usage is also concentrated in large

and high-productivity firms. Complementary to Babina et al. (2024), who study how general

AI investment affects firm performance through increased innovation, we focus on AI as a new

price-setting tool and study how AI pricing could affect firm performance, both on average and

in response to monetary policy shocks.

Finally, our paper contributes to the macroeconomics literature on price stickiness. Before the

rise of AI pricing, empirical studies found that prices were quite sticky. Bils and Klenow (2004)

and Nakamura and Steinsson (2008) document significant price stickiness in offline markets for

major goods and services, and Cavallo (2017), Cavallo (2018), and Gorodnichenko, Sheremirov,

and Talavera (2018) find that online prices are as sticky as offline prices. Gorodnichenko and

Weber (2016) shows that sticky prices are costly, such that firms with more flexible prices have

lower stock market return volatility in response to monetary shocks. The rise of AI pricing might

fundamentally alter the frequency and magnitude of price adjustments and price discrimination,

with implications for firm performance and monetary policy transmission. We show that AI

pricing increases the sensitivity of firms’ stock returns to monetary policy shocks, even after

controlling for price adjustment frequencies.

Layout. The rest of the paper is organized as follows. Section 2 documents the economy-wide
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rise of AI pricing using the universe of job postings from Lightcast. Section 3 merges the job

postings to firms’ balance sheets and analyzes the determinants of AI pricing adoption. Section

4 examines how AI pricing adoption is correlated with long-term firm performance. Section 5

shows how AI pricing adoption affects monetary policy shock transmission to firm performance.

Section 6 lays out the model and explores its predictions. Section 7 concludes.

2 The Rise of AI Pricing

In this section, we document the rise of AI pricing using data from Lightcast for online job post-

ings. We identify leading firms that adopted AI pricing and examine the time-series trends and

the cross-industry distributions of AI pricing jobs.

2.1 AI Pricing Versus Traditional Pricing

AI pricing differs from traditional pricing in three key ways. First, AI pricing relies on algorithm-

based decision-making, where machine learning models automatically adjust prices based on data

inputs, whereas traditional pricing often depends on manager-based decisions guided by human

intuition and experience. For instance, DellaVigna and Gentzkow (2019) document the uniform

pricing patterns in U.S. retail chains and argues that could be potentially attributed to managerial

inertia. Second, AI pricing leverages more granular or even personalized data, enabling highly

tailored pricing for individual customers or segments, while traditional pricing uses more aggre-

gated data to set broader price points. Finally, AI pricing utilizes real-time data to dynamically

adjust prices based on current market conditions, demand, and competitor actions, whereas tra-

ditional pricing primarily relies on historical data and slower, manual adjustments. These differ-

ences make AI pricing more adaptive, precise, and responsive compared to traditional methods.
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2.2 Lightcast Data

We use the Lightcast data, formerly Burning Glass, on U.S. job postings from 2010Q1 to 2024Q1.3

Lightcast collects job posting data from over 40,000 online job boards and company websites,

converting them into a systematic machine-readable form. This dataset covers nearly the entire

universe of online job postings in the U.S. from 2010 onward, representing approximately 60–70%

of all job postings, both online and offline. The company employs a sophisticated, multi-step

deduplication algorithm to prevent double-counting job posts posted on multiple job boards or

across multiple periods, ensuring each posting corresponds to a distinct job posting.4 The repre-

sentativeness of Lightcast data is stable over time at the occupation level. Acemoglu et al. (2022b)

confirmed that the total job posts in Lightcast are consistent with the Job Openings and Labor

Turnover Survey (JOLTS), and its distribution across industries and occupations aligns with both

JOLTS and Occupational Employment Statistics (OES).

The main advantage of using Lightcast is its detailed text information for each job posting,

including job title, job location, occupation, employer name, specific skills required, and job de-

scription. Following the approach in Acemoglu et al. (2022b) and Babina et al. (2024), we detect

AI pricing job posts by identifying postings that require AI-related skills and mentioning the

keyword “pricing.” This helps us identify businesses that are likely to engage in AI pricing, as

AI-skilled pricing teams are crucial for its implementation. Our analysis focuses on the firm

level, as pricing algorithms are typically developed and applied at the firm level rather than at

the establishment level.5 Specifically, we first identify all AI-related and pricing job postings. We

then identify AI pricing jobs as those at the intersection of these two groups. For each firm, we

measure the intensity of AI pricing jobs by the share of AI pricing job postings in all pricing job
3Lightcast provides job posting data at a monthly frequency. We aggregate the data to the quarterly frequency

because we need to merge it with the quarterly firm-level balance sheet information in Compustat.
4Lightcast applies a unique two-step approach to deduplication. In the first step, they use intelligence

contained within the scraping spiders to identify a new advertisement for that source on a source-level ba-
sis. In the second step, they use normalized fields, including job title, company, and location, and check to
see if these fields have been used in new advertisements found in another source. They check across 60 days
of data to identify duplicates. For more details, please refer to https://kb.lightcast.io/en/articles/
6957661-how-does-lightcast-handle-duplicate-postings. Such a sophisticated deduplication algo-
rithm could largely mitigate the duplications. However, if AI-related job posts have more (fewer) duplications beyond
60 days, then the job posting data would be over-counting (under-counting) AI-related job posts.

5For instance, Calder-Wang and Kim (2023) shows that RealPage uses a centralized price-setting algorithm for all
rental apartments across all cities in the U.S., Assad et al. (2024) shows the same centralized algorithmic price-setting
across gasoline stations in Germany, and Spann et al. (2025) provides summaries across various industries.
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postings. Although it does not perfectly measure such demand, this measure could reflect a firm’s

labor demand for AI pricing needs.6

2.3 Measuring AI Pricing Adoption

To construct our measures on the intensity of AI pricing, we extract AI-related jobs, pricing

jobs, and AI-related pricing jobs from all job postings. To define AI-related job postings, we

follow exactly Acemoglu et al. (2022b)’s narrow category classification, focusing on advanced

technology such as machine learning and AI chatbots.7 This narrow category measure avoids

capturing traditional pricing information technology functions, such as office software, software

as a service (SaaS) pricing models, or data analysis, which are distinct from core AI activities.

We then identify pricing jobs based on the keyword “pricing.” In particular, for each job

posting, we search for the keyword “pricing” in the job title, the job skill requirements, and the job

descriptions. Focusing on the keyword “pricing” mitigates concerns about capturing traditional

pricing jobs such as sales and marketing in the pricing measure. For robustness, we also consider

three alternative scopes of pricing jobs. The first scope includes only those that contain the

keyword “pricing” in the job title. The second scope includes those with the keyword “pricing”

in the job skill requirements but not in the title. The third scope includes jobs with the keyword

“pricing” in the main body of the job descriptions but not in the title or the skill requirements.

AI Pricing Measures Finally, we identify AI pricing job postings as the intersection of AI-

related and pricing jobs. Table 1 summarizes these job postings at the firm level, with a monthly

frequency. With these measures, we could construct a panel of job postings for firm 𝑗 at time

𝑡. The measures include the number of jobs posted 𝑁𝑗 ,𝑡 , the number of AI jobs posted 𝑁 𝐴𝐼
𝑗,𝑡 ,

6Our measure has limitations in not capturing AI pricing demand perfectly. For example, a firm can redeploy
some existing AI workers to handle pricing tasks without posting a new job opening. For another example, a firm
can delegate AI pricing tasks to a large company, in which case, they are performing AI pricing but not hiring AI
pricing workers. We cannot address the former case, but since most firms are public, they would likely hire if they
have AI pricing demand, even though they could also reallocate other AI workers to perform AI pricing tasks. For
the latter case, we check robustness, excluding IT or professional & business services firms.

7The full list of AI-related skills includes machine learning, computer vision, machine vision, deep learning, vir-
tual agents, image recognition, natural language processing, speech recognition, pattern recognition, object recog-
nition, neural networks, AI chatbot, supervised learning, text mining, unsupervised learning, image processing,
Mahout, recommender systems, support vector machines, random forests, latent semantic analysis, sentiment analy-
sis/opinion mining, latent Dirichlet allocation, predictive models, kernel methods, Keras, gradient boosting, OpenCV,
XGBoost, Libsvm, Word2vec, machine translation, and sentiment classification.
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Table 1: Summary Statistics of Firm-Level Lightcast Job Postings

Job Type Total Mean Std.Dev. Min Max

All Jobs 3.39e+08 13.329 189.182 1 147846
Pricing Jobs 2662686 0.105 5.466 0 6905
AI Jobs 1614194 0.064 2.837 0 2835
AI Pricing Jobs 24461 0.001 0.124 0 149

Observations 25414949 Firm-Level at Monthly Frequency

Notes: This table summarizes our Lightcast Job Posting Data from 2010Q1
to 2024Q1 at a monthly frequency. We follow the narrow category clas-
sification of Acemoglu et al. (2022b) to define AI-related job postings. We
extract pricing jobs in three scopes: the keyword “pricing” in the job title
(Scope 1), in their specific job skill requirements (Scope 2), and in the main
body of the job description (Scope 3). We define AI pricing job postings as
the intersection of AI-related and pricing jobs across all three scopes.

the number of pricing jobs posted 𝑁
𝑃𝑠
𝑗 ,𝑡 for each scope 𝑠 = {1, 2, 3, 𝑎𝑙𝑙}, and the number of AI

pricing jobs 𝑁
𝐴𝑃𝑠
𝑗 ,𝑡 for each scope 𝑠 = {1, 2, 3, 𝑎𝑙𝑙}. We then compute firm-level non-cumulative

intensity measures (𝑆ℎ𝑎𝑟𝑒𝑥/𝑦𝑗,𝑡 = 𝑁 𝑥
𝑗,𝑡/𝑁

𝑦

𝑗,𝑡) and cumulative intensity measures (𝐶𝑢𝑚.𝑆ℎ𝑎𝑟𝑒𝑥/𝑦𝑗,𝑡 =

∑
𝑡

𝑡=0 𝑁
𝑥
𝑗,𝑡/∑

𝑡

𝑡=0 𝑁
𝑦

𝑗,𝑡) for firm 𝑗 of 𝑥 over 𝑦 at different time frequencies 𝑡 = {yearly, quarterly} to

meet our various data analysis needs. Since a successful hire typically affects a firm’s capabilities

over multiple years, our primary focus is on the cumulative intensities of AI-related pricing jobs

within pricing jobs (𝐶𝑢𝑚.𝑆ℎ𝑎𝑟𝑒𝐴𝑃𝑠/𝑃𝑠𝑗 ,𝑡 ) across all scopes. In contrast, we use the non-cumulative

intensity to illustrate the aggregate time trends of AI pricing adoption over time, as it can indicate

the immediate periodic relative labor demand in AI pricing and is comparable to the literature,

such as Acemoglu and Restrepo (2018) and Babina et al. (2024).

Advantages and Limitations A main advantage of using the Lightcast job postings data to

infer the aggregate trends and cross-sectional distributions of AI pricing adoption is that it allows

us to construct a panel of firm-level data covering the entire economy, with detailed information

on the timing and intensity of AI pricing adoption.8

However, there are several important limitations in using the job postings data for measuring

AI pricing adoption. First, our measure is an input-based measure, which is different from the

outcome-based measures commonly used in industrial organization studies (Assad et al., 2024).

8Following the same procedure, a researcher could use the Lightcast job postings data to construct measures for
other AI-related corporate activity, such as AI marketing, AI risk management, and AI hiring.
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Posting a job is not the same as hiring an AI pricing worker, although changes in job postings

provide a clear signal of changes in firms’ demand for AI pricing labor, and thus give us an indirect

measure of AI pricing adoption. In addition, an outcome-based measure has significantly higher

data requirements than our input-based measure, such that it is typically applied only to specific

firms and specific products. Second, some firms may use third-party vendors for AI pricing. This

is especially relevant for small firms that lack the resources to build in-house algorithmic pricing.

Our job postings data does not allow us to detect such indirect adoption of AI pricing. This may

lead to an under-estimation of AI pricing adoption, especially among small firms.

Third, some jobs were posted repeatedly (i.e., duplicated postings), which may not indicate

multiple hires but rather hiring difficulties. This could lead to over-estimation of AI pricing adop-

tion. Although Lightcast has a de-duplication algorithm that mitigates the repeated posting issue,

the algorithm is imperfect (e.g., it removes job postings from the past 60 days, but not from the

entire history). Overall, however, repeated postings could also lead to over-estimation of the de-

mand for traditional pricing labor and general AI-related labor as well. Thus, it is not clear how

it would affect the overall trends and cross-firm variations of the relative demand for AI pricing

labor.

Despite these limitations, our input-based measure remains a valuable and scalable tool for

capturing firm-level AI pricing adoption across broad sectors and over time. It enables systematic

comparisons of AI pricing adoption patterns, even when detailed output data are unavailable.

2.4 Aggregate Trends

Our evidence indicates that the share of non-cumulative AI pricing job postings has risen sharply,

increasing more than ten times from 2010 to 2024. Panel (a) of Figure 1 shows the fraction of

non-cumulative all-scope pricing job postings that we classify as AI-related: this fraction starts

at 0.12% in 2010. It increases sharply after 2015, reaching a peak of 1.61% in 2021, before slow-

ing modestly to 1.34% in 2024:Q1. The trend is consistent across different scopes of pricing job

measures, as shown in Appendix A.3.

The rise of AI pricing parallels the increase in all AI-related jobs. During the same period, the

share of AI-related jobs in all job postings has increased from about 0.1% in 2010, growing sharply
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Figure 1: Aggregate Time Trends of AI Pricing, Pricing, and AI Jobs
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Notes: This figure plots the aggregate time trends of non-cumulative intensities of AI pricing, pricing, and
AI jobs at the annual frequency. The data source is Lightcast job postings. AI job postings are measured
following exactly Acemoglu et al. (2022b)’s narrow category classification. Pricing jobs are measured in
three scopes. The first scope only includes the most narrowly defined pricing jobs, which must include
exactly the keyword “pricing” in their job titles. The second scope includes jobs with the keyword “pricing”
in their specific job skill requirements. Finally, the third scope includes jobs with the keyword “pricing”
in the main body of the job description, which is the most broadly defined pricing jobs. We combine all
three scopes to generate an all-scope measure. Finally, we extract AI pricing jobs at the intersection of
both AI-related and pricing jobs in all three scopes. With these measures, we could construct a panel of job
postings for firm 𝑗 at time 𝑡. The measures include the number of jobs 𝑁𝑗 ,𝑡 , the number of AI jobs 𝑁𝐴𝐼

𝑗,𝑡 , the
number of pricing jobs 𝑁 𝑃𝑠

𝑗 ,𝑡 with scope 𝑠 = {1, 2, 3, 𝑎𝑙𝑙}, and the number of AI pricing jobs 𝑁𝐴𝑃𝑠
𝑗 ,𝑡 with scope

𝑠 = {1, 2, 3, 𝑎𝑙𝑙}. We aggregate all measures to the firm level non-cumulative intensity 𝑆ℎ𝑎𝑟𝑒
𝑥/𝑦

𝑗,𝑡 = 𝑁 𝑥
𝑗,𝑡/𝑁

𝑦

𝑗,𝑡 .
The three scopes ’ robustness checks of alternative measures separately are presented in Figure A4.

after 2015 to a peak of about 0.75% in 2022 (Panel (b)), which is similar to the trend in the share of

AI-related jobs documented by Acemoglu et al. (2022b) and Babina et al. (2024). As a result, the

share of AI pricing jobs in all AI-related jobs has stayed relatively stable (Panel (c)). In contrast
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to the tenfold increase in the share of AI pricing jobs in all pricing jobs, the share of pricing jobs

in all job postings has declined by about 40%, from 0.93% in 2010 to 0.59% in 2024Q1 (Panel (d)),

implying a large displacing effect of non-AI pricing workers by the rise of AI pricing. Again, these

patterns are robust to different scopes of pricing job measures, as we show in Appendix A.3.

2.5 Variations Across Industries

We now examine how the sharp increases in AI pricing job postings after 2015 vary across indus-

tries, and how such cross-sectional variations compare with those of all AI-related job postings.

Figure 2: Variations Across Two Digit Industry Sector
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(b) Share of AI Jobs in All Jobs

Notes: This figure plots the across-industry variations of AI pricing, pricing, and AI jobs for 2010-
2015 and 2016-2024. The data source is Lightcast job postings. AI job postings are measured fol-
lowing exactly Acemoglu et al. (2022b)’s narrow category classification. Pricing jobs are measured
in three scopes. The first scope only includes the most narrowly defined pricing jobs, which must
include exactly the keyword “pricing” in their job titles. The second scope includes jobs with the
keyword “pricing” in their specific job skill requirements. Finally, the third scope includes jobs
with the keyword “pricing” in the main body of the job description, which is the most broadly
defined pricing jobs. We combine all three scopes to generate an all-scope measure. We extract AI
pricing jobs at the intersection of both AI-related and pricing jobs in all three scopes.

Figure 2 shows that the share of AI pricing jobs in all pricing jobs has increased after 2015 in

most 2-digit NAICS industries, with substantial cross-sectional variations in its expansion. The

information industry had the highest initial share of AI pricing jobs (about 0.7%) before 2015, and

the share increased sharply to 2.2% after 2015. The transportation industry has experienced an
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even sharper increase in AI pricing after 2015, with a share exceeding 2.5%. Both the finance and

insurance industry and the professional and business services industry saw a substantial rise in

AI pricing from relatively low levels in 2010-2015 to about 1.7% in 2016-2024. Other industries,

such as agriculture, mining, construction, wholesale trade, and healthcare, had lower shares of AI

pricing jobs in both sub-periods, indicating limited applicability or slower adoption of AI in pric-

ing within these sectors. Even in those sectors, the share of AI pricing has increased substantially

after 2015.

In contrast to the widespread increases in the share of AI pricing jobs, Panel (b) shows that the

post-2015 increases in the share of AI jobs in all jobs have been concentrated in four industries:

information, manufacturing, professional and business services, and finance and insurance. In the

post-2015 period, the information sector had the largest share of AI-related posts, at around 2.3%.

The other 3 sectors had a share of about 1.3% during the same period. The share of AI-related job

postings in the remaining industries stayed at low levels. In contrast, the share of AI pricing jobs

has grown rapidly in a broader set of industries, including transportation, information, business

services, finance, and retail trade.

2.6 The Case of Uber

We use the case of Uber as a validation of our measure of AI pricing jobs. We show that our

measure could roughly reflect the firm’s adoption of AI pricing. We look at Uber for two rea-

sons: (1) Uber is an early adopter of AI pricing, and (2) Uber is the most transparent company

about its stages in AI pricing adoption, potentially because they need to educate customers to ac-

cept AI pricing. Therefore, we combine our measure of AI pricing for Uber, Uber Newsroom

(www.uber.com/newsroom) and Uber Blog (www.uber.com/blog), where Uber posts their an-

nouncements and summaries of algorithm adoptions and future plans, which provide a useful case

study for validating our measure of AI pricing. We divide Uber’s AI pricing adoptions roughly

into four different stages, as shown below in Figure 3.

In the first stages, Uber implemented basic rule-based dynamic pricing to balance supply and

demand early on. In their newsroom article "A Walk Through Surge Pricing, 2010-2012", they

explained that during periods of high demand like holidays or inclement weathers, prices would

13

https://www.uber.com/newsroom/take-a-walk-through-surge-pricing/


Figure 3: Timeline of AI Share of Pricing Job Posts by Uber

increase to incentivize more drivers to log on and meet demand. This early form of surge pricing

was manually controlled and relatively simple, with limited data inputs. In our data, we also do

not find any AI pricing job posts by Uber. In the second stage, around 2012, Uber began using

algorithms to automate surge pricing, which monitors real-time data from rides, locations, and

drivers to adjust prices. They clarified in their December 2012 newsroom article "NYE 2012 Surge"

on how they conduct dynamic surge pricing. Our measure does not capture it in 2012 because

these tasks are conducted by non-pricing AI engineers. In our measure, we start to observe initial

appearance and fast growth of Uber’s AI pricing job posts since the beginning of year 2013.

In the years that followed, Uber’s AI pricing became increasingly sophisticated. As summa-

rized in a blog article in November 2018 ("Scaling Machine Learning at Uber with Michelangelo,"),

Uber has increased usage of advanced machine learning, including new pricing and demand pre-

diction models in the three years since 2015. This represents the third stage of AI pricing adoption

by Uber. In the final stage in 2019, Uber posted the article "How Uber Leverages Applied Behavioral

Science at Scale" to discuss how the company leveraged psychology and behavioral economics,

but they never discussed pricing ever since. Meanwhile, they received much attentions and crit-

icisms on their behavioral pricing from major newspapers such as Forbes, The Guardian, and

Fortune. Uber CEO Dara Khosrowshahi admitted that they are conducting behavioral pricing in

an earning conference call in 2024 (Computer weekly). In our measure, we find that Uber’s AI

share of pricing job posts has surged after 2018 and has remained high ever since.
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In summary, although our measure of AI pricing does not perfectly reflect Uber’s AI pricing

usage, it aligns roughly with the timeline of Uber’s public announcements of AI pricing adoption.

In Appendix A.2, we provide further narrative evidence using the cases of Amazon and JP Morgan

Chase to validate our measure of AI pricing jobs.

2.7 Robustness Checks

We provide robustness checks in Online Appendix A. We include news articles and industrial

reports (A.1), more detailed case studies of Uber and two other leading firms (A.2), and alternative

measures of aggregate trends (A.3), showing clear transition paths in the advancements of AI

pricing. We also perform checks for leading firms (A.4), (A.5), and examine industry variations

with different scopes (A.6). The list of leading firms and the variations across industries remain

consistent, even when the AI pricing measure is broken down into three different scopes.

3 Firm-level Determinants of AI Pricing Adoption

Given the heterogeneity described above, what determines a firm’s adoption of AI pricing? We

next examine the firm-level determinants of AI pricing adoption, and we find that larger, more

productive, and R&D-intensive firms tend to adopt AI pricing more aggressively.

3.1 Merge to Compustat Quarterly Dataset

To obtain firm characteristics such as size, age, productivity, and financial conditions, we merge

the Lightcast data with Compustat Quarterly. Compustat Quarterly provides detailed balance

sheet data for the universe of public US firms. We use the crosswalk provided by Lightcast to

link the firm ID in Lightcast to the Global Company Key (gvkey) in Compustat. Additionally, we

verify firm names and addresses to remove duplicates from the crosswalk. This process results

in a quarterly panel dataset with 4,695 unique firms and 131,647 firm-quarter observations.

For each firm, we construct three measures of AI pricing adoption. First, we construct a

dummy indicator of AI pricing adopter 1𝐴𝑃
𝑗,𝑡 which equals one if firm 𝑗 posted at least one AI
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Table 2: Summary of Lightcast & Compustat Quarterly Merged Sample

Variables Obs. Mean Std.Dev. Min Max

1
𝐴𝑃
𝑗,𝑡 131647 0.17 0.37 0 1

𝐴𝑃𝑁𝑗 ,𝑡 131647 3.79 32.69 0 1177
𝐴𝑃𝑆𝑗 ,𝑡 107452 0.01 0.05 0 1

Log Sales 129240 5.32 2.10 -7 12
Log TFP 113178 0.07 0.91 -8 6
Log Age 122189 3.07 0.84 0 5
Tobin’s Q 131276 0.55 0.59 -2 4
Log Markup 128637 0.63 0.95 -11 9
R&D/Sales 131647 0.09 0.21 0 1
ROA 131331 0.03 0.08 0 13
Cash/Asset 131403 0.19 0.22 0 1
Debt/Asset 122077 0.26 0.26 0 9

Notes: This table summarizes our Lightcast Job Posting Data merged with Compustat Quar-
terly from 2010Q1 to 2024Q1. The balance sheet variables are winsorized at the top and
bottom 1%. Additionally, we constrain our R&D intensity to be between 0 and 1. The three
measures of AI pricing adoption are constructed as follows. First, we construct a dummy
indicator of AI pricing adopter 1𝐴𝑃

𝑗,𝑡 which equals one if firm 𝑗 posted at least one AI pricing
job since the beginning of our data sample until time 𝑡. Second, we count the cumulative
number of AI pricing job postings 𝐴𝑃𝑁𝑗 ,𝑡 , which sums up firm 𝑗 AI pricing job postings from
the beginning of our data sample until time 𝑡. Finally, we construct an intensity indicator
of AI pricing job posting as a share of pricing job posting 𝐴𝑃𝑆𝑗 ,𝑡 , which divides the above
cumulative number of AI pricing job postings 𝐴𝑃𝑁𝑗 ,𝑡 by the cumulative number of pricing
job postings. We use cumulative rather than periodic measures to reduce the noise caused by
large short-run fluctuations in job postings.

pricing job since the beginning of our data sample until time 𝑡. Second, we count a cumulative

number of AI pricing job postings 𝐴𝑃𝑁𝑗 ,𝑡 , which sums up firm 𝑗 AI pricing job postings from the

beginning of our data sample until time 𝑡. Finally, we construct an intensity indicator of AI pricing

job posting as a share of pricing job posting 𝐴𝑃𝑆𝑗 ,𝑡 , which divides the above cumulative number

of AI pricing job postings 𝐴𝑃𝑁𝑗 ,𝑡 by the cumulative number of pricing job postings. We use

cumulative rather than periodic measures to reduce noise caused by large short-run fluctuations

in job postings. Table 2 provides the summary statistics.

3.2 Distributions of Adopters and Non-Adopters

We begin by examining the ex-ante characteristics of firms that posted AI pricing jobs (adopters)

and those that never posted AI pricing jobs (non-adopters) from 2010 to 2024Q1. The three panels
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of Figure 4 compare the distributions of sales, total factor productivity (TFP), and age for adopters

and non-adopters in 2010, the first year in our sample. Both sales and TFP are winsorized at the

top and bottom 1% at the quarterly frequency.

Figure 4: Distributions of AI Pricing Adopters and Non-Adopters In the Year 2010
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Notes: An adopter (1𝐴𝑃
𝑗,2024𝑄1 = 1) is a firm 𝑗 that posted at least one AI pricing job since the beginning of

our data sample until 2024Q1; Non-Adopter (1𝐴𝑃
𝑗,2024𝑄1 = 0) is a firm 𝑗 that never posted AI pricing job since

the beginning of our data sample until 2024Q1. We provide a comparison of AI adoption in Figure B4.

Figure 4 panel (a) shows that the histogram of log-transformed sales for adopters is shifted

to the right, indicating that adopters generally have higher sales than non-adopters. Panel (b)

depicts the distribution of logged TFP in 2010 for the two groups of firms. To calculate TFP, we

first obtain value-added by subtracting the cost of goods sold from sales (𝑠𝑎𝑙𝑒𝑞 − 𝑐𝑜𝑔𝑠𝑞). We

then regress the logged value-added on fixed capital (𝑝𝑝𝑒𝑛𝑡𝑞) and number of employees (𝑒𝑚𝑝),

using the Solow residuals as the logged revenue TFP.9 Panel (b) reveals a similar pattern: adopters

have higher TFP values, suggesting that more productive firms are more likely to post AI pricing

job posts. Panel (c) plots the distribution of logged firm age in 2010. Firm age is calculated as

the difference between the current date and the date of incorporation obtained from Datastream.

We observe that adopters tend to be older on average compared to non-adopters, though the

difference is less pronounced than the size and TFP distributions.

9We follow Foster, Haltiwanger, and Syverson (2008) to calculate our OLS Solow residuals. Since a quarterly
number of employees is not available, we use the annual number of employees instead. Meanwhile, we use the
Bureau of Labor Statistics NAICS 4-digit PPI deflator to deflate fixed capital and value-added.
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3.3 Firm-Level Determinants of AI Pricing Adoption

Next, we run OLS regressions to test whether the ex-ante characteristics of firms can predict

their AI pricing adoption decisions. Following Babina et al. (2024), we consider the following

regression specification

1
𝐴𝑃
𝑗,2024𝑄1 = 𝛽𝑥𝑗 ,2010𝑞 + 𝛾𝑠 + 𝛿𝑞 + 𝜖𝑗𝑞 , (1)

where 𝑗 represents firms, 𝑞 is one of the four quarters, and 𝑠 refers to two-digit NAICS sectors.

The dependent variable, 1𝐴𝑃
𝑗,2024𝑄1, is firm 𝑗 ’s AI pricing adoption indicator, which equals one if

the firm posts at least one AI pricing job post between 2010Q1 and 2024Q1. The independent

variable, 𝑥𝑗 ,2010𝑞 , represents firm 𝑗 ’s characteristic in quarter 𝑞 of 2010, for 𝑞 = 𝑄1, 𝑄2, 𝑄3, 𝑄4.

The characteristics examined include logged sales, logged TFP, logged age, Tobin’s Q, logged

markup, the ratio of R&D to sales, return on assets (ROA), cash-to-assets ratio, and debt-to-assets

ratio, all winsorized at the top and bottom 1% at the year quarter frequency.10 We also include

industry fixed effects (𝛾𝑠) and quarter fixed effects (𝛿𝑞) to control for unobserved heterogeneity.

These regressions include only firm-quarter observations that were available in 2010, so the total

number of observations was reduced to between 6342 and 7797, depending on the controls. Since

our adoption dummy is a binary variable, we estimate a probit regression and find similar results

for size, productivity, and R&D intensity, as reported in the Online Appendix B.3.

Table 3 reports the regression results for our coefficient of interest 𝛽. The first three columns

confirm our previous findings that larger, more productive, and older firms are more likely to

adopt AI pricing technology. Columns (4) and (5) show that Tobin’s Q and log markup are also

positively associated with AI pricing adoption, suggesting that firms with higher evaluation and

higher pricing power are more likely to adopt AI pricing. Column (6) indicates that the R&D to

sales ratio is insignificant on its own. Conversely, ROA and cash-to-assets ratio in Columns (7)

and (8) show negative correlations with AI pricing adoption, indicating that firms with higher

profitability and liquidity are less likely to adopt AI pricing. In Column (9), the debt-to-assets

ratio has a significant positive coefficient, suggesting that firms with higher leverage are more

likely to adopt AI pricing.

10Tobin’s Q is calculated as tobinq = (prccq × cshoq − ceqq + atq)/atq, where the market value of the firm’s assets
(prccq × cshoq) is adjusted by subtracting the book value of equity (ceqq) and adding total assets (atq), then divided
by total assets (atq). Markup is calculated as the ratio of sales to the costs of goods sold.
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Table 3: Firm-level Determinants of AI Pricing Adoption

AI Pricing Adopter Dummy Indicator, 2010-2024Q1 (1𝐴𝑃
𝑗,2024𝑄1 = 1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 0.089*** 0.107***
(0.002) (0.003)

Log TFP 2010 0.103*** 0.020***
(0.006) (0.007)

Log Age 2010 0.032*** -0.004
(0.005) (0.005)

Tobin’s Q 2010 0.011*** 0.011***
(0.003) (0.004)

Log Markup 0.016** 0.021*
(0.007) (0.012)

R&D/Sales 2010 -0.000 0.335***
(0.000) (0.057)

ROA 2010 -0.225*** 0.122
(0.081) (0.098)

Cash/Assets 2010 -0.104*** 0.004
(0.023) (0.033)

Debt/Assets 2010 0.071*** -0.053**
(0.020) (0.022)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 7768 7060 7304 7785 7748 7797 7776 7787 7299 6342
adj. 𝑅2 0.205 0.060 0.022 0.018 0.017 0.017 0.017 0.019 0.015 0.236

Note: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. All independent variables are win-
sorized at the top and bottom 1% at the year quarter frequency. Industry fixed effects are controlled at the
two-digit NAICS level. The data sample is from 2010Q1 to 2024Q1 at the quarterly level. The regression
specification is 1𝐴𝑃

𝑗,2024𝑄1 = 𝛽𝑥𝑗 ,2010𝑞 + 𝛾𝑠 + 𝛿𝑞 + 𝜖𝑗𝑞 , where 𝑗 represents firms, 𝑞 is one of the four quarters,
and 𝑠 refers to two-digit NAICS sectors. The dependent variable, 1𝐴𝑃

𝑗,2024𝑄1, is firm 𝑗 ’s AI pricing adoption
indicator, which equals one if the firm posts at least one AI pricing post between 2010Q1 and 2024Q1. The
independent variable, 𝑥𝑗 ,2010𝑞 , represents firm 𝑗 ’s characteristic in quarter 𝑞 of 2010, for 𝑞 = 𝑄1, 𝑄2, 𝑄3, 𝑄4.

In Column (10), we pool all explanatory variables to run a “horse-race” regression. The sig-

nificant variables are sales, TFP, and the R&D to sales ratio. Log sales have a coefficient of 0.107,

indicating that a 10% increase in sales is associated with a 1.07% higher probability of adopting AI

pricing, controlling for other firm characteristics. Log TFP has a coefficient of 0.020, suggesting

that a 10% increase in TFP is related to a 0.20% higher likelihood of AI pricing adoption. Unlike

the single-variable regression in Column (6), the R&D to sales ratio shows a highly significant

positive correlation, with a coefficient of 0.335, indicating that a 10% increase in R&D investment

corresponds to a 3.35% higher probability of AI pricing adoption. Additionally, log markup is

marginally significant and positive, while the debt-to-assets ratio is significantly negative, indi-

cating that more leveraged firms are less likely to adopt AI pricing. Other variables such as age,
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Table 4: Firm-level Determinants of Cumulative AI Pricing Job Postings

Total AI pricing job Postings, 2010-2024Q1 (𝐴𝑃𝑁𝑗 ,2024𝑄1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 3.754*** 4.161***
(0.210) (0.233)

Log TFP 2010 5.485*** 1.585***
(0.547) (0.585)

Log Age 2010 1.417*** 0.446
(0.502) (0.413)

Tobin’s Q 2010 1.126*** 0.112
(0.291) (0.289)

Log Markup 2010 0.594 0.600
(0.627) (0.897)

R&D/Sales 2010 -0.006 10.122**
(0.024) (4.426)

ROA 2010 -8.341 6.158
(7.489) (7.642)

Cash/Assets 2010 1.962 5.283**
(2.134) (2.556)

Debt/Assets 2010 1.721 -2.635
(1.388) (1.677)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 7768 7060 7304 7785 7748 7797 7776 7787 7299 6342
adj. 𝑅2 0.053 0.028 0.016 0.016 0.014 0.014 0.014 0.014 0.007 0.078

Note: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. All independent variables are win-
sorized at the top and bottom 1% at the year quarter frequency. Industry fixed effects are controlled at the
two-digit NAICS level. The data sample is from 2010Q1 to 2024Q1 at the quarterly level. The regression
specification is 𝐴𝑃𝑁𝑗 ,2024𝑄1 = 𝛽𝑥𝑗 ,2010𝑞 +𝛾𝑠 +𝛿𝑞 +𝜖𝑗𝑞 , where 𝑗 represents firms, 𝑞 is one of the four quarters,
and 𝑠 refers to two-digit NAICS sectors. The dependent variable, 𝐴𝑃𝑁𝑗 ,2024𝑄1, is firm 𝑗 ’s AI pricing adoption
indicator, which is the total AI pricing posts posted between 2010Q1 and 2024Q1. The independent variable,
𝑥𝑗 ,2010𝑞 , represents firm 𝑗 ’s characteristic in quarter 𝑞 of 2010, for 𝑞 = 𝑄1, 𝑄2, 𝑄3, 𝑄4.

Tobin’s Q, ROA, and cash-to-asset ratio are insignificant in this pooled regression.

In addition to using a dummy dependent variable for the AI pricing adopter dummy, we also

run regressions for total AI pricing job postings and AI pricing job postings as a share of total

pricing job postings. The specifications are as follows:

{𝐴𝑃𝑁𝑗 ,2024𝑄1, 𝐴𝑃𝑆𝑗 ,2024𝑄1} = 𝛽𝑥𝑗 ,2010𝑞 + 𝛾𝑠 + 𝛿𝑞 + 𝜖𝑗𝑞 , (2)

where all the other specifications are the same as regression specification (1). The 𝐴𝑃𝑆𝑗 ,2024𝑄1

regressions further require that the observations must have non-zero pricing job postings so

that an 𝐴𝑃𝑆𝑗 ,2024𝑄1 indicator is non-missing, so the total number of observations was reduced to

between 5826 and 6244, depending on the controls.
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Table 5: Firm-level Determinants of AI Pricing Intensity

Total AI Pricing Job Postings/Total Pricing Job Postings, 2010Q1-2024Q1 (𝐴𝑃𝑆𝑗 ,𝑡)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 0.001*** 0.001
(0.000) (0.000)

Log TFP 2010 0.004*** 0.003**
(0.001) (0.001)

Log Age -0.002*** -0.003***
(0.001) (0.001)

Tobin’s Q 2010 0.001*** 0.001
(0.000) (0.001)

Log Markup 2010 0.001 -0.002
(0.001) (0.002)

R&D/Sales 2010 -0.000 0.021**
(0.000) (0.009)

ROA 2010 0.008 -0.017
(0.017) (0.025)

Cash/Assets 2010 0.008** -0.000
(0.004) (0.005)

Debt/Assets 2010 0.003 0.005
(0.003) (0.003)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 6229 5826 5925 6238 6215 6244 6232 6240 5875 5286
adj. 𝑅2 0.010 0.012 0.012 0.011 0.009 0.009 0.009 0.010 0.010 0.015

Note: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. All independent variables are win-
sorized at the top and bottom 1% at the year quarter frequency. Industry fixed effects are controlled at the
two-digit NAICS level. The data sample is from 2010Q1 to 2024Q1 at the quarterly level. The regression
specification is 𝐴𝑃𝑆𝑗 ,2024𝑄1 = 𝛽𝑥𝑗 ,2010𝑞 +𝛾𝑠 +𝛿𝑞 +𝜖𝑗𝑞 , where 𝑗 represents firms, 𝑞 is one of the four quarters,
and 𝑠 refers to two-digit NAICS sectors. The dependent variable, 𝐴𝑃𝑆𝑗 ,2024𝑄1, is firm 𝑗 ’s AI pricing adoption
indicator, which is the total AI pricing posts posted between 2010Q1 and 2024Q1 divided by the total pricing
posts posted during the same period. The independent variable, 𝑥𝑗 ,2010𝑞 , represents firm 𝑗 ’s characteristic in
quarter 𝑞 of 2010, for 𝑞 = 𝑄1, 𝑄2, 𝑄3, 𝑄4.

In Table 4, we replace the dependent variable in regression specification (1) with firms’ cu-

mulative AI pricing job postings from 2010Q1 to 2024Q1 (𝐴𝑃𝑁𝑗 ,2024𝑄1). The results are consistent

with the previous findings: Column (10) of Table 4 shows that firms with more sales, higher TFP,

or a higher R&D-to-sales ratio post more AI pricing job posts.

Lastly, we change the dependent variable to the ratio of total AI pricing job postings to total

pricing job postings from 2010Q1 to 2024Q1 (𝐴𝑃𝑆𝑗 ,2024𝑄1), reflecting AI pricing job postings in-

tensity. Table 5 displays the regression results. Focusing on Column (10), we find that log sales

lose explanatory power, while log TFP still has a significantly positive correlation with AI pricing

adoption intensity. Conversely, age now shows a significant negative coefficient, implying that

younger firms are more likely to intensify their AI job postings among pricing postings. The R&D
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to sales ratio has a significantly positive coefficient, with a coefficient of 0.021.

3.4 Robustness Checks

We check various distributions of the determinants of AI pricing adoption in Online Appendix B.1,

provide comparisons with AI adoption in Online Appendix B.2, and run sub-period regressions

of specification (1) in Online Appendix B.4. We find the adoption patterns of AI pricing are

consistently significant in size, productivity, and R&D intensity, but not consistently significant

in other measures.

4 AI Pricing Adoption and Firm Performance

Next, we examine how AI pricing adoption is correlated to firm performance. We first document

that firms that post a larger share of AI pricing job openings positively correlate with faster sales,

employment, and market value growth. We consider and rule out alternative explanations for

this result, including reverse causality and omitted variables, using long differences.

We examine whether firms that hire a larger share of AI pricing workers in their pricing

teams see faster growth over time. To explore this, we specify a long-difference regression, link-

ing changes in firm outcomes to different indicators of AI pricing adoption as is standard in

settings with slow-moving processes, such as technological progress (i.e., robots in Acemoglu

and Restrepo (2020) and AI in Babina et al. (2024)), by taking first differences in independent and

dependent variables, the long-differences specification ensures that time-invariant firm charac-

teristics do not drive the results. Accordingly, we run the following regression:

Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] + Γ𝑍𝑗 ,𝑡1 + 𝛾𝑠 + 𝛿𝑞 + 𝜖𝑗 (3)

where Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure 𝐴𝑃𝑆𝑗 ,𝑡2 and 𝐴𝑃𝑆𝑗 ,𝑡1, in

which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023.

We do not include 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1 includes a set of controls, including

the share of AI jobs, the share of pricing jobs, and firm balance sheet characteristics in 𝑡1 that

22



determine AI pricing adoption from Section 3 (size, TFP, and R&D intensity). Finally, 𝛾𝑠 is the

two-digit NAICS industry fixed effect, and 𝛿𝑞 represents the quarter fixed effects.

Table 6: AI Pricing and Firm Performance: Long-differences

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 1.193*** 1.137*** 0.996*** 0.875*** 1.134*** 1.197*** 0.259 0.259**
(0.332) (0.305) (0.286) (0.268) (0.343) (0.332) (0.166) (0.121)

Share of AI -0.371 -0.637 -0.702 -0.628**
(0.698) (0.609) (0.760) (0.276)

Share of Pricing 0.068 0.231 0.080 -0.050
(0.190) (0.236) (0.207) (0.075)

Log Sales -0.103*** -0.121*** -0.133*** 0.009***
(0.009) (0.008) (0.010) (0.003)

Log TFP 0.046** 0.175*** 0.106*** -0.092***
(0.019) (0.018) (0.021) (0.008)

R&D/Sales 1.559*** 1.202*** 1.002*** 0.318***
(0.179) (0.165) (0.195) (0.071)

Controls N Y N Y N Y N Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 4014 3777 3677 3471 4025 3781 4014 3777
adj. 𝑅2 0.064 0.145 0.086 0.188 0.049 0.121 0.018 0.059

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2]+Γ𝑍𝑗 ,𝑡1+

𝛾𝑠+𝛿𝑞+𝜖𝑗 , whereΔ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure𝐴𝑃𝑆𝑗 ,𝑡2 and𝐴𝑃𝑆𝑗 ,𝑡1,
in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023. We
omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1 includes a set of controls, including the share of AI jobs, the
share of pricing jobs, size, age, productivity, and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is
the two-digit NAICS industry fixed effect, and 𝛿𝑞 represents the quarter fixed effect.

Main Results Table 6 shows the estimates for the above regression. In columns 1, 3, 5, and

7, we include only industry- and quarter-fixed effects to examine the unconditional relationship

between changes in AI pricing adoption and firm growth. In columns 2, 4, 6, and 8, we add a

rich set of controls measured at the start of the sample period in 2010, including (1) the initial

firm-level characteristics that predict changes in AI pricing adoption in Section 3 (size, TFP, and

R&D-intensity); and (2) the initial firm-level share of AI workers and share of pricing workers.

We also include industry-fixed effects and quarter-fixed effects. This results in a cross-sectional

sample of 4,014 firm-quarter observations in the year 2010. The results of the regressions without

controls are similar when estimated on the entire available sample.

23



In columns 1 and 2 of Table 6, the dependent variable is the firm-level change in log sales

from 2010 to 2023. Changes in AI pricing are associated with a significant and economically

meaningful increase in sales growth: a one percentage point increase in the share of AI pricing

workers to the whole pricing team over the thirteen-year period corresponds to an additional

1.137% cumulative growth in sales. In columns 3 and 4, we find a positive association with em-

ployment growth similar to the relationship with sales but with a smaller magnitude. Columns 5

and 6 show that increases in AI pricing intensity are also associated with increases in firm assets.

Finally, columns 7 and 8 show that firms that increased their usage of AI pricing also experienced

increases in markup. A one percentage point increase in the share of AI pricing workers to the

whole pricing team over the thirteen-year period corresponds to an additional 0.259% cumula-

tive growth in markup. Including firm-level controls has small effects on the magnitude of the

estimated coefficients, with the exception of the markup regression, for which the estimated coef-

ficient on the growth of the share of AI pricing jobs turns from insignificantly different from zero

to significant at the 95 percent confidence level. Thus, it is unlikely that the results are driven by

ex-ante omitted firm characteristics.

The estimated coefficients in Table 6 are economically meaningful. These results suggest that

adopting AI pricing is positively associated with firm growth. However, it is important to note

that the correct interpretation of our results is not that adopting AI pricing, without any other

adjustments to the firm operations, will directly drive additional sales growth. Instead, the main

mechanism should be that AI pricing appears to stimulate firm growth through faster and more

accurate demand estimations so firms could quickly and more accurately adjust their prices to

maintain a higher markup.11

Building an AI pricing team could be very costly initially, but once adopted, firms with more

products and operating across more sub-markets could benefit more. Table 7 shows that the

benefits from AI pricing adoption are not evenly distributed across firms of different sizes, as

measured by their employment in 2010. The table shows that the positive relations between the

adoption of AI pricing and firm growth are stronger for larger firms. The correlations between

AI pricing adoption and firm growth are insignificantly different from zero for the bottom one-

11Our findings are consistent with Corhay et al. (2025) such that firms with higher proportions of data scientists
have higher markups, higher information quality proxied by lower sales forecast errors, and higher stock returns.
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Table 7: AI Pricing and Heterogeneous Firm Performance: Long-differences

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023]× Size Small 0.606 0.402 0.189 0.182 -0.150 -0.102 0.116 -0.152
(0.516) (0.504) (0.433) (0.437) (0.531) (0.546) (0.263) (0.198)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023]× Size Medium 2.008*** 1.749*** 1.258** 0.751 2.324*** 2.085*** 1.024*** 1.189***
(0.605) (0.561) (0.524) (0.502) (0.622) (0.607) (0.309) (0.220)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023]× Size Large 2.919*** 3.182*** 3.162*** 2.983*** 2.429*** 2.855*** -0.456 -0.197
(0.875) (0.822) (0.739) (0.717) (0.900) (0.890) (0.446) (0.323)

Controls N Y N Y N Y N Y
Industry×Szie Group FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 4005 3777 3677 3471 4016 3781 4005 3777
adj. 𝑅2 0.135 0.182 0.187 0.234 0.135 0.171 0.061 0.112

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are controlled
at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] × 𝑗𝑠𝑖𝑧𝑒 + Γ𝑍𝑗 ,𝑡1 +

𝛾𝑠 × 𝑗𝑠𝑖𝑧𝑒 + 𝛿𝑞 + 𝜖𝑗 , where Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure 𝐴𝑃𝑆𝑗 ,𝑡2 and
𝐴𝑃𝑆𝑗 ,𝑡1, in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023.
We do not include 2024Q1 for potential seasonality. 𝑗𝑠𝑖𝑧𝑒 is the size dummy in 2010. 𝑍𝑗 ,𝑡1 includes a set of
controls, including the share of AI jobs, the share of pricing jobs, size, age, productivity, and other balance
sheet characteristics in 𝑡1. Finally, 𝛾𝑠 × 𝑗𝑠𝑖𝑧𝑒 in the two-digit NAICS industry × size dummy fixed effect, and
𝛿𝑞 represents the quarter fixed effect.

third of the firms. This is consistent with the findings that big data and AI technologies have

scale-economy effects that favor large firms (Farboodi et al., 2019; Babina et al., 2024). The results

suggest that, given the fixed costs of acquiring big data and setting up AI pricing teams, larger

firms are more likely to benefit from AI pricing, as it enables them to adjust prices based on faster

and more accurate estimates of changes in market conditions.12

Robustness Checks We examine the robustness of the long-differences results in Online Ap-

pendix C. We find the firm performance patterns of AI pricing remain consistent with our main

results across various robustness checks, including: excluding finance and utility firms (C.1), ex-

cluding IT firms (C.2), excluding business and professional services firms (C.3), excluding all the

above firms (C.4), excluding largest firms in top 1%, 5%, or 10% (C.5), or controlling for changes

in AI share and pricing share (C.6).

12We find that the firms that benefit the most in markup growth are the middle-sized firms. This could come from
that firm size is not monotonically related to markups (Dedola et al., 2025). Meanwhile, the relation between markup
and firm size depends on how we measure markup from the production side: the relation would be different if you
measure markup using sales/intermediate goods vs. sales/wage bills (Raval, 2023).
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5 Evidence from High-Frequency Monetary Policy Shocks

Finally, we leverage the transmission of high-frequency identified monetary policy shocks in

the 30-minute window of FOMC announcements and firm-level daily stock returns to test the

causal evidence of AI pricing adoption on firm performance. The identification is that firms’

AI pricing adoption is predetermined upon the 30-minute window of FOMC announcements;

therefore, differences in the responses of firm-level daily stock returns, conditional on AI pricing

adoption, reflect how the firms’ market value depends on their adoption of AI pricing.

5.1 Merge to CRSP, Monetary Shocks, FPA, and Upstreamness

To do so, we need to further merge our Lightcast-Compustat-Merged Data in Section 3.1 with

CRSP Daily Stock Return Data and a measure of high-frequency monetary policy shocks. We use

Bauer and Swanson (2023)’s series for the period from January 27, 2010, to December 11, 2019,

capturing a total of 81 FOMC announcement events.13 We then extract the daily stock return of

all firms in our Compustat sample on the corresponding FOMC announcement dates.

To interpret the effects of monetary shocks more intuitively, we standardize the raw monetary

shocks by flipping the sign and dividing by 25 bps. We denote the adjusted monetary shock at

event date 𝑒 as 𝑀𝑃𝑒. So, a one-unit increase in the variable 𝑀𝑃𝑒 reduces the one-year rate by 25

basis points. We also include the industry-level frequency of price adjustment measure (𝐹𝑃𝐴𝑠)

for industry 𝑠 to compare to our lagged quarterly AI pricing share measure (𝐴𝑃𝑆𝑗 ,𝑡−1) for firm 𝑗 .

Our industry-level frequency of price adjustments measure is from Pasten, Schoenle, and Weber

(2020), which was originally calculated from micro PPI data in the Bureau of Labor Statistics.

𝐹𝑃𝐴𝑠 is one over the average duration of prices within industry 𝑠. Finally, we also include the

13The monetary policy shock that we use is the measure of the monetary policy surprises constructed by Bauer
and Swanson (2023), which is computed as the first principal component of changes in the interest rates of the first
four quarterly Eurodollar futures contracts, ED1 to ED4, around FOMC announcements. Adams and Barrett (2025)
estimate that this shock is largely driven by immediate federal funds rate surprises and short-term forward guidance.
The measure is scaled such that a one-unit change in the first principle component corresponds to a one-percentage
point change in the ED4 rate, which is a one-year interest rate. We follow the approach of Bauer and Swanson
(2023) to orthogonalize the raw measure to information available before FOMC announcements. In particular, the
orthogonalized monetary policy surprise measure is the residuals from regressing the raw monetary policy surprises
on the six macro and financial variables listed in Table 1 of Bauer and Swanson (2023). We do not use the post-COVID
sample because the Bauer-Swanson orthogonalized shock series is not available for 2020. Our results are robust to
using the raw (unadjusted) monetary policy surprise measure.
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Table 8: Summary of Variables in Lightcast-Compustat-CRSP-Merged Data

Variables Obs. Mean Std.Dev. Min Max

𝑀𝑃𝑒 81 -0.0226 0.1189 -0.2672 0.3240
𝐹𝑃𝐴𝑠 134 0.1420 0.1310 0.0334 0.7613
𝑈𝑃𝑠 142 1.9791 0.7963 1.0000 3.7484

Stock Returns (%) 180236 0.0919 3.0169 -65 224
𝐴𝑃𝑆𝑗 ,𝑡−1 104963 0.0044 0.0484 0 1
1
𝐴𝑃
𝑗,𝑡−1 180362 0.4500 0.4975 0 1

Share of AI 172332 0.0042 0.0289 0 1
Share of Pricing 172332 0.0126 0.0540 0 3
Log Sales 169976 5.3198 2.0305 -7 12
Log Age 163336 3.0145 0.8635 0 5
Log TFP 152351 0.0952 0.8796 -8 6
Log Tobin’s Q 172011 0.5488 0.5630 -1 4
R&D/Sales 180362 0.1198 0.2723 0 1
Cash/Asset 172154 0.1832 0.2196 0 1
Log Markup 169460 0.6477 0.8812 -11 9

Notes: This table summarizes our Lightcast Job Posting Data merged with Compu-
stat Quarterly, monetary policy shocks (𝑀𝑃𝑒) from Bauer and Swanson (2023), fre-
quency of price adjustments (𝐹𝑃𝐴𝑠) from Pasten, Schoenle, and Weber (2020), and
daily stock returns from CRSP from 2010Q1 to 2019Q4. The balance sheet variables
are winsorized at the top and bottom 1%. The two measures of AI pricing adoption are
constructed as follows. First, we construct a dummy indicator of AI pricing adopter
1
𝐴𝑃
𝑗,𝑡 which equals one if firm 𝑗 posted at least one AI pricing job since the beginning

of our data sample until time 𝑡. Second, we construct an intensity indicator of AI
pricing job posting as a share of pricing job posting 𝐴𝑃𝑆𝑗 ,𝑡 , which divides the above
total number indicator of AI pricing job posting numbers 𝐴𝑃𝑁𝑗 ,𝑡 by the total number
indicator of pricing job posting numbers. We use cumulative rather than periodic
measures to avoid noise caused by large short-run fluctuations in job postings.

industry-level upstreamness from Antràs et al. (2012) to test whether downstream firms that are

closer to more complex consumer markets would benefit more from AI pricing adoption. Table

8 summarizes the newly merged variables of monetary shocks, frequency of price adjustments,

daily stock returns, and other firm-level variables.
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5.2 Baseline Empirical Specification and Results

Using the monetary policy shock series, we estimate the event-level (𝑒) empirical specification to

assess whether AI pricing adoption leads to differential responses of stock returns

𝑅𝑗 ,𝑒 =𝛽0 + 𝛽1𝑀𝑃𝑒 + 𝛽2𝑀𝑃𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 + 𝛽3𝐴𝑃𝑆𝑗 ,𝑡−1

+ 𝛽4𝑍𝑗 ,𝑡−1 + 𝛽5𝐹𝑃𝐴𝑠 + 𝛽6𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 + 𝛾𝑗 + 𝜖𝑗𝑒,

(4)

where 𝑅𝑗 ,𝑒 denotes the daily stock return of firm 𝑗 in the event date 𝑒 and 𝑀𝑃𝑒 is our measure of

monetary policy shocks. The term 𝐴𝑃𝑆𝑗 ,𝑡−1 denotes the share of the firm’s cumulative AI pricing

jobs in all pricing jobs, lagged by one quarter.14 The regression includes a set of one-quarter lags of

firm-level control variables denoted by 𝑍𝑗 ,𝑡−1, including the share of AI jobs in all jobs, the share of

pricing jobs in all jobs, log sales, log age, log TFP, log Tobin’s Q, cash ratio, and firm-level markup.

The regression also controls for the frequency of price adjustment (𝐹𝑃𝐴𝑠) at the 6-digit industry

level of NAICS and its interaction with the monetary policy shock. The regression also includes

firm fixed effects (𝛾𝑗 ). For robustness, we consider an alternative specification that includes event

fixed effects, in which case, the direct effects of monetary policy shocks are absorbed by the event

fixed effects. For further robustness, we estimate a regression that includes the interactions of

monetary policy with all the firm-level controls (𝑀𝑃𝑒 × 𝑍𝑗 ,𝑡−1) in regression 4 (see the Online

Appendix D.2.1).

Table 9 presents the result of our baseline regression specification (4), From all columns ex-

cept 4 and 8, which control for event fixed effects, we find that a 25 bps unexpected monetary

expansion causes stock returns to rise by about 2.5 to 3.0 percentage points. Firms with a higher

share of AI pricing benefit significantly more from this monetary expansion. Focusing on column

8, the interpretation is that from a firm that does not adopt AI pricing at all to a firm with about

15% share of AI pricing (e.g., Amazon), the stock return responses would be topped up by nearly

one additional percentage point (6.464 × 0.15 ≈ 0.97). This magnitude is statistically significant

and economically meaningful. This magnitude of stock return responses is comparable to the

effects of increasing the frequency of price adjustment by about 2.5 standard deviations.15

14In Online Appendix D.1, we estimate a similar specification, where we use the one-quarter lag of the cumulative
incidence of AI pricing adoptions (i.e., the dummy indicator 1𝐴𝑃

𝑗,𝑡−1). We find that the qualitative results are similar.
15The point estimate of the coefficient on the interaction term 𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 shows that, for a firm in an industry
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Table 9: Stock Return Response to Monetary Shocks: AI Pricing Share

(1) (2) (3) (4) (5) (6) (7) (8)
𝑀𝑃𝑒 2.426*** 2.490*** 2.414*** 2.887*** 2.959*** 2.930***

(0.068) (0.072) (0.074) (0.149) (0.154) (0.157)
𝑀𝑃𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 3.195** 2.985** 2.873** 3.399*** 6.967** 6.501** 6.073** 6.464**

(1.358) (1.398) (1.422) (1.285) (2.895) (2.772) (2.876) (2.596)
𝐴𝑃𝑆𝑗 ,𝑡−1 0.153 0.006 0.047 0.201 0.329 0.407 0.378 0.372

(0.166) (0.175) (0.449) (0.406) (0.337) (0.337) (0.675) (0.609)
𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 0.387*** 0.357*** 0.342*** 0.384***

(0.129) (0.130) (0.131) (0.118)
𝐹𝑃𝐴𝑠 0.026* 0.014

(0.015) (0.017)
Controls N Y Y Y N Y Y Y
Firm FE N N Y Y N N Y Y
Event FE N N N Y N N N Y
𝑁 109802 96656 96656 96656 28043 24556 24556 24556
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (4), where𝐴𝑃𝑆𝑗 ,𝑡−1
is the firm-level share of AI pricing jobs in all pricing jobs, lagged by one quarter. The key independent
variable is the interaction between the AI pricing share and the monetary policy shocks. The regression
includes controls for the frequency of price adjustment (𝐹𝑃𝐴𝑠) at the NAICS 6-digit industry level and
its interactions with the monetary policy shocks. In addition, the regression includes the same set of
firm-level controls as in the long-difference regressions, including (1) the lagged firm-level markup, the
lagged firm-level share of AI workers, and the lagged share of pricing workers, and (2) the lagged firm-
level characteristics, including log sales, log age, log TFP, log Tobin’s Q, and cash ratio. The regression
also includes firm and event fixed effects in some specifications.

5.3 Downstream versus Upstream Firms

Monetary policy shocks may have heterogeneous effects on firms’ stock returns conditional on

their AI pricing adoptions. We now examine whether downstream and upstream firms respond

differently to the shock. As firms move from upstream to downstream, approaching more com-

plex consumer markets, they may encounter more complex pricing tasks, making AI pricing

adoption more important to them. This is also evident in our data, where more upstream in-

dustries exhibit a higher frequency of price adjustments, as reflected in a positive correlation

𝐶𝑜𝑟𝑟(𝑈𝑃𝑠, 𝐹𝑃𝐴𝑠) = 0.2 in our sample.

To examine whether AI pricing adoption leads to differential responses of stock returns for

with the frequency of price adjustments that is one standard deviation above the mean, an expansionary monetary
policy shock (equivalent to a 25 basis point decline in the one-year nominal interest rate) raises its stock return
by an additional 0.384 percentage point. In comparison, moving from a firm without AI pricing to Amazon with
𝐴𝑃𝑆 = 0.15, the additional increase in stock returns is comparable to raising 𝐹𝑃𝐴𝑠 by 6.464 × 0.15/0.384 = 2.525

standard deviations.
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upstream versus downstream firms, we estimate the empirical specification

𝑅𝑗 ,𝑒 = 𝛽0 + 1
𝑈𝑝

𝑗 × (𝛽
𝑢𝑝

1 𝑀𝑃𝑒 + 𝛽
𝑢𝑝

2 𝑀𝑃𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1)

+ (1 − 1
𝑈𝑝

𝑗 ) × (𝛽
𝑑𝑜𝑤𝑛
1 𝑀𝑃𝑒 + 𝛽

𝑑𝑜𝑤𝑛
2 𝑀𝑃𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1)

+ 𝛽3𝐴𝑃𝑆𝑗 ,𝑡−1 + 𝛽4𝑍𝑗 ,𝑡−1 + 𝛽5𝐹𝑃𝐴𝑠 + 𝛽6𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 + 𝛾𝑗 + 𝜖𝑗𝑒,

(5)

where 1𝑈𝑝

𝑗 is a dummy indicator of upstream firms, which equals one if the upstreamness of firm

𝑗 is above the mean level and zero otherwise. The other variables are the same as in Eq. (4).

Table 10: Stock Return Response to Monetary Shocks: Downstream vs Upstream

(1) (2) (3) (4) (5) (6) (7) (8)
𝑀𝑃𝑒 × {1

𝑈𝑝

𝑗 = 0} 2.904*** 3.016*** 2.994*** 2.941*** 3.051*** 3.019***
(0.198) (0.201) (0.203) (0.202) (0.204) (0.207)

𝑀𝑃𝑒 × {1
𝑈𝑝

𝑗 = 1} 2.804*** 2.826*** 2.785*** 2.892*** 2.897*** 2.864***
(0.207) (0.217) (0.220) (0.252) (0.262) (0.265)

𝑀𝑃𝑒 × {1
𝑈𝑝

𝑗 = 0} × 𝐴𝑃𝑆𝑗 ,𝑡−1 6.490** 5.944** 5.558* 5.956** 6.705** 6.227** 5.801** 6.172**
(2.894) (2.777) (2.885) (2.609) (2.914) (2.789) (2.895) (2.612)

𝑀𝑃𝑒 × {1
𝑈𝑝

𝑗 = 1} × 𝐴𝑃𝑆𝑗 ,𝑡−1 -4.827 -4.872 -5.088 -3.823 26.174 24.272 22.114 29.998
(6.080) (5.810) (5.803) (5.247) (28.541) (27.246) (27.237) (23.530)

𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 0.401*** 0.382*** 0.366*** 0.396***
(0.132) (0.135) (0.135) (0.119)

Controls N Y Y Y N Y Y Y
Firm FE N N Y Y N N Y Y
Event FE N N N Y N N N Y
𝑁 30172 26549 26549 26549 28043 24556 24556 24556
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (5), where the key inde-
pendent variable 𝐴𝑃𝑆𝑗 ,𝑡−1 is the firm-level share of AI pricing jobs in all pricing jobs, lagged by one quarter. The
term 1

𝑈𝑝

𝑗 is a dummy indicator of upstream firms. The regression includes controls for the frequency of price
adjustment (𝐹𝑃𝐴𝑠) at the NAICS 6-digit industry level and its interactions with the monetary policy shocks. In
addition, the regression includes the same set of firm-level controls as in the long-difference regressions, includ-
ing (1) the lagged firm-level markup, the lagged firm-level share of AI workers, and the lagged share of pricing
workers, and (2) the lagged firm-level characteristics. The regression also includes firm and event fixed effects.

Table 10 presents the result of our regression specification (5). The table shows that, for

firms without AI pricing, an expansionary monetary policy shock raises their stock returns, with

similar magnitudes for upstream firms and downstream firms. Second, adopting AI pricing sig-

nificantly increases the sensitivity of stock returns to monetary policy shocks for downstream

firms, but not for upstream firms. The differences in the stock return sensitivity for downstream

adopters (relative to non-adopters) are economically meaningful. In particular, Column 8 of Ta-
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ble 10 shows that, moving from a downstream firm without AI pricing to one with 𝐴𝑃𝑆 = 15%

(such as Amazon), the stock return responses would be topped up by one additional percentage

point, comparable to that shown in Table 9.

5.4 Asymmetric Effects of Monetary Shocks

Table 11: Stock Return Response to Monetary Shocks: AI Pricing Share

Allowing for Asymmetric Effects of Monetary Shocks (𝑀𝑃+
𝑒 Stands for Easing)

(1) (2) (3) (4) (5) (6) (7) (8)
𝑀𝑃+

𝑒 3.357*** 3.243*** 3.231*** 3.364*** 3.330*** 3.258***
(0.147) (0.155) (0.156) (0.326) (0.331) (0.333)

𝑀𝑃−
𝑒 -1.821*** -1.996*** -1.860*** -2.588*** -2.726*** -2.715***

(0.110) (0.117) (0.120) (0.239) (0.247) (0.254)
𝑀𝑃+

𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 -3.830 -3.665 -3.939 -2.633 -0.731 -0.727 -1.322 -1.072
(3.038) (3.083) (3.100) (2.800) (6.430) (6.130) (6.168) (5.566)

𝑀𝑃−
𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 -7.590*** -7.273*** -7.319*** -7.267*** -11.547*** -10.831** -10.608** -11.073***

(2.146) (2.234) (2.267) (2.049) (4.470) (4.285) (4.406) (3.978)
𝑀𝑃+

𝑒 × 𝐹𝑃𝐴𝑠 0.663** 0.526* 0.549** 0.453*
(0.266) (0.276) (0.276) (0.250)

𝑀𝑃−
𝑒 × 𝐹𝑃𝐴𝑠 -0.180 -0.236 -0.195 -0.331*

(0.207) (0.208) (0.210) (0.189)
Controls N Y Y Y N Y Y Y
Firm FE N N Y Y N N Y Y
Event FE N N N Y N N N Y
𝑁 109802 96656 96656 96656 28043 24556 24556 24556
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (6), where the key
independent variable 𝐴𝑃𝑆𝑗 ,𝑡−1 is the firm-level share of AI pricing jobs in all pricing jobs, lagged by one
quarter. The regression includes controls for the frequency of price adjustment (𝐹𝑃𝐴𝑠) at the NAICS 6-digit
industry level and its interactions with the monetary policy shocks. In addition, the regression includes
the same set of firm-level controls as in the long-difference regressions, including (1) the lagged firm-level
markup, the lagged firm-level share of AI workers, and the lagged share of pricing workers and (2) the
lagged firm-level characteristics. The regression also includes firm and event fixed effects.

Monetary policy easing and tightening may have asymmetric effects on the relative stock returns

for firms adopting AI pricing. To examine this possibility, we estimate the empirical specification

𝑅𝑗 ,𝑒 = 𝛽0 + 𝛽
+
1𝑀𝑃

+
𝑒 + 𝛽

+
2𝑀𝑃

+
𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 + 𝛽

−
1𝑀𝑃

−
𝑒 + 𝛽

−
2𝑀𝑃

−
𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1

+ 𝛽3𝐴𝑃𝑆𝑗 ,𝑡−1 + 𝛽4𝑍𝑗 ,𝑡−1 + 𝛽5𝐹𝑃𝐴𝑠 + 𝛽
+
6𝑀𝑃

+
𝑒 × 𝐹𝑃𝐴𝑠 + 𝛽

−
6𝑀𝑃

−
𝑒 × 𝐹𝑃𝐴𝑠 + 𝛾𝑗 + 𝜖𝑗𝑒,

(6)

where 𝑅𝑗 ,𝑒 denotes the daily stock return of firm 𝑗 in the event date 𝑒, 𝑀𝑃+
𝑒 denotes expansionary
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monetary policy shocks (𝑀𝑃+
𝑒 = 𝑀𝑃𝑒 when 𝑀𝑃𝑒 is positive) and equals 0 otherwise, 𝑀𝑃−

𝑒 denotes

contractionary shocks (𝑀𝑃−
𝑒 = −𝑀𝑃𝑒 when 𝑀𝑃𝑒 is negative) and 0 otherwise. The remaining

variables are the same as in Eq. (4).

Table 11 shows that, for firms without AI pricing, monetary expansion increases their stock

returns, whereas monetary tightening reduces them. For firms that adopt AI pricing, the effects

of monetary policy shocks are asymmetric. An expansionary monetary policy shock does not

have significant effects on the stock returns of adopters (relative to nonadopters). In contrast, a

contractionary monetary policy shock has a large and significantly negative effect on the relative

stock returns of the adopters. This finding suggests that firms that adopt AI pricing are perceived

as riskier, conditional on monetary policy contractions. One potential explanation is that firms

that adopt AI pricing have higher markups (or profits) on average, so a contractionary monetary

policy shock that leads to deviations from their average markups would reduce their market value.

The results are qualitatively similar when we measure AI pricing adoptions using the adoption

dummy (see Appendix D.3).

5.5 Robustness Checks

We conduct various robustness checks for the monetary shock results and present the results in

Online Appendix D. We first show that the main results are robust when we measure AI pricing

adoptions using the adoption dummy (see Table D1). Second, the results are also robust when we

include the interactions of monetary policy shocks with each of the firm-level controls to alleviate

concerns about potential confounding effects from predetermined firm characteristics other than

AI pricing (see Table D2). Third, we also include additional analyses that incorporate interactions

with control variables or exclude finance, information technology, and business services firms.

Finally, we test the specifications using the non-orthogonalized monetary shocks from Bauer and

Swanson (2023), and all the results remain robust.
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6 A Stylized Model of AI Pricing Adoption

To understand the economic mechanism, we introduce a simple stylized model of AI pricing

adoption focusing on the essential role of AI in reducing information friction. In the model, a

monopolist firm faces a demand function, which is a high-dimensional function of market char-

acteristics. The firm uses pricing labor and algorithmic computing to learn about the demand

function.16 Learning about more aspects of the demand function allows the firm to price discrim-

inate more effectively.

To make the model tractable, we abstract from dynamics and competition, although both di-

mensions are clearly important in an environment with information frictions. The model is static,

with all intertemporal variations driven by the trend changes in the relative price of computing.

In addition, our model focuses on the optimizing decisions of a monopolist, and thus abstracts

from potential interactions between algorithmic pricing and competition, an important subject

explored in other studies (Klein, 2021; Brown and MacKay, 2023). We use the model to study a

different mechanism: how capital-labor complementarity incentivizes a firm to adopt AI pricing

over time and how it affects firm performance measured by revenues and profitability.

The model first explains four main patterns documented in the data, except for the across-

industry variations: the adoption rate of AI pricing and the AI share of pricing labor both rise

over time, while the AI pricing is correlated with both revenue and markups in the cross-section.

We then use the model to explore the effects of aggregate demand shocks.

6.1 General Environment and Firm’s Problem

General Environment We consider the pricing problem of monopolist firms. A firm sells a

single good, which it produces at the constant marginal cost 𝜅. It sells this good in a continuum

of submarkets indexed by 𝑗 . The continuum of submarkets has measure 𝜇, which stands for

the firm’s market size. Each submarket might represent individual buyers, consumer groups,

regions, platforms, or other market disaggregation. We refer to submarkets as individuals for

16See the literature on information friction or information acquisition and price setting, i.e., Mankiw and Reis
(2002), Maćkowiak and Wiederholt (2009), Woodford (2009), and Chen et al. (2020).
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concreteness.

A firm chooses the price 𝑝𝑗 offered to individual 𝑗 . Individuals have a 𝑗-specific quantity

demand function 𝑑𝑗(𝑝𝑗). For tractability, we suppose that the demand functions are linear:

𝑑𝑗(𝑝𝑗) = 𝑧𝑗 − 𝜂𝑝𝑗 (7)

where the slope 𝜂 is common for all individuals, but the intercept 𝑧𝑗 varies. Information frictions

stem from imperfect knowledge of 𝑧𝑗 .

Pricing Problem with Uncertain Demand We now describe how a monopolist sets prices

conditional on having some information about 𝑧𝑗 . We let Ω denote a firm’s information set. The

firm’s objective is to maximize profits by choosing a price 𝑝𝑗 for each individual. The profit 𝜋𝑗

earned from a given individual is

𝜋𝑗(𝑝𝑗) = (𝑝𝑗 − 𝜅)𝑑𝑗(𝑝𝑗)

therefore, the firm’s conditional objective is

max
𝑝𝑗 𝑗∈

𝔼
[∫𝑗∈

(𝑝𝑗 − 𝜅)𝑑𝑗(𝑝𝑗)𝑑𝑗 |Ω
]

(8)

Lemma 1 Facing linear demand function (7), the firm’s optimal price is

𝑝𝑗 =
𝔼 [𝑧𝑗 |Ω]

2𝜂
+
𝜅

2
(9)

Proof: Appendix E.1.1

Thus, the optimal price set by the monopolist is a linear combination of the marginal cost

and the intercept of the demand curve. With uncertain demand, unlike the special case with

full information, the optimal price depends on the monopolist’s conditional expectations of the

intercept.
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6.2 Information Acquisition and Optimal Pricing

Information Structure The individual-specific demand term 𝑧𝑗 is determined by a large num-

ber of different factors, {𝑥𝑗 ,𝑛}∞𝑛=0. We abstract from data acquisition challenges and assume that

the factors are all observed by the firm. However, the firm does not know the function through

which these factors affect demand. Specifically, demand is given by

𝑧𝑗 = 𝑧 + 𝑏0𝑥𝑗 ,0 + 𝑏1𝑥𝑗 ,1 + 𝑏2𝑥𝑗 ,2 + ...

and the coefficients {𝑏𝑛}
∞
𝑛=0 are unknown ex ante. 𝑧 is an unconditional mean which is known.

Firms will use resources to learn about these coefficients in order to nowcast 𝑧𝑗 .17 Firm will make

information acquisition decisions before observing the data {𝑥𝑗 ,𝑛}
∞
𝑛=0. Therefore, they will need

some idea of how the data will be distributed. We assume that 𝑥𝑗 ,𝑛 are Gaussian and uncorrelated.

Given the orthogonality assumption, these factors can be interpreted as the principal components

of the demand-relevant data.

For the purposes of using calculus, it is convenient to extend the factor indexing to the real

line. Thus, we write 𝑧𝑗 as an integral rather than a sum:

𝑧𝑗 = 𝑧 + ∫

∞

0

𝑏(𝑛)𝑥𝑗(𝑛)𝑑𝑛

where 𝑧 denotes the unconditional average 𝑧 = 𝔼[𝑧𝑗]; we assume 𝑧 > 𝜂𝜅 so that firms are willing

to produce.18 We scale the factors to have unit variance and sign the factors so that 𝑏(𝑛) is positive.

The factors are then ordered in descending importance, so 𝑏(𝑛) decreases. Thus, factor 𝑥𝑗(0) is

most important for nowcasting 𝑧𝑗 , factor 𝑥𝑗(1) is less important than 𝑥𝑗(0) but more important

than 𝑥𝑗(2), and so forth. All else being equal, firms would prefer to know low-indexed factors to

high-indexed factors.

17Note that the coefficients are common across individuals 𝑗 ; they encode the general, high-dimensional demand
function estimated by firms. There may also be some unknowable 𝑗-specific residual; this would complicate our
notation but not our analysis.

18It is possible that for some markets, 𝑧𝑗 < 𝜂𝜅. We assume that firms commit to supplying each market for
tractability before observing demand factors and setting prices by Lemma 1. Thus, they make profits in expectation,
but possibly not ex-post in all markets.
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Suppose firms observe factors 𝑥(𝑛) for all 𝑛 ∈ [0, 𝑁 ]. Then, we write the firm’s nowcast as

𝔼𝑁𝑧𝑗 ≡ 𝔼[𝑧𝑗 |Ω] = 𝑧 + ∫

𝑁

0

𝑏(𝑛)𝑥𝑗(𝑛)𝑑𝑛

Additionally, the standard normal scaling and orthogonality assumption imply that the uncondi-

tional forecast variance is

𝕍[𝔼𝑁𝑧𝑗] = ∫

𝑁

0

𝔼 [𝑏(𝑛)
2
] 𝑑𝑛

This unconditional variance is an increasing function of 𝑁 . From it, we define the function 𝑅(𝑁):

𝑅(𝑁) ≡
𝕍[𝔼𝑁𝑧𝑗]

𝜈

where 𝜈 ≡ 𝕍[𝑧𝑗]. The function 𝑅(𝑁) captures the share of the variance of 𝑧𝑗 that is nowcastable

by a firm observing 𝑁 factors (analogous to an 𝑅2 statistic). 𝑅(𝑁) is both increasing and differ-

entiable.

Information Acquisition Firms use real inputs in order to observe the function coefficients

{𝑏𝑛}
∞
𝑛=0. They can select which coefficients to observe, so they will choose the most valuable for

nowcasting, i.e., those with the lowest indices. Thus, their selection can be summarized by 𝑁 ,

the maximum index they choose to observe.

Firms have a production function for observing indices. The number of indices they can

observe is given by

𝑁 = 𝐹(𝐿𝑎, 𝐿𝑏 , 𝐶)

where 𝐹 is some increasing function of three inputs. The first two inputs are types of labor:

basic pricing labor 𝐿𝑏 and AI pricing labor 𝐿𝑎. These types are substitutes but draw from the

same labor pool at wage 𝑤. However, AI pricing labor can use algorithmic computing 𝐶 as a

complementary input. Algorithmic computing, which includes processing costs, software, and

IT support, is purchased at 𝑞. In order to model the discrete adoption decision, we also assume

that firms must pay the fixed cost 𝜒 if they choose to use any AI pricing.

Firm’s Optimal Pricing To characterize the firm’s behavior, it is first useful to derive the

unconditional expectation of the firm’s profit

36



Lemma 2 The firm’s unconditional expected profit is

𝔼
[∫𝑗∈

𝜋𝑗(𝑝𝑗)𝑑𝑗
]
= 𝜇Φ𝜈𝑅(𝑁)

where

Φ ≡
(𝑧 − 𝜂𝜅)

2

4𝜂
(10)

Proof: Appendix E.1.2

Lemma 2 demonstrates that profits are linearly increasing in the nowcastable share 𝑅(𝑁) of

the variance. This is because firms try to price discriminate but make errors when they do not

precisely know the demand functions that they face. When firms choose a larger 𝑅(𝑁), they have

less uncertainty over demand, allowing them to price discriminate more effectively and raising

profits.

Before observation, firms solve the following ex-ante profit-maximization problem, using the

Lemma 2 expression for the expected profit:

max
𝑁 ,𝐿𝑎,𝐿𝑏 ,𝐶

𝜇Φ𝜈𝑅(𝑁) − 𝑤(𝐿𝑎 + 𝐿𝑏) − 𝑞𝐶 − 𝜒1(𝐿𝑎𝐶 > 0)

𝑠.𝑡. 𝑁 = 𝐹(𝐿𝑎, 𝐿𝑏 , 𝐶)

where 1(𝐿𝑎𝐶 > 0) is an indicator function that takes value 1 if and only if both AI pricing inputs

𝐿𝑎 and 𝐶 are strictly positive.

Ref. Comment 5: Extension with two wages is in the appendix.

The first order condition for basic pricing labor is

𝜇Φ𝜈𝑅
′
(𝑁 )𝐹𝑏(𝐿𝑎, 𝐿𝑏 , 𝐶) = 𝑤 (11)

If firms do not adopt AI pricing, then 𝐿𝑎 = 0 = 𝐶. But if they do adopt AI pricing and choose

𝐿𝑎 > 0 < 𝐶, then their first order conditions for these inputs are

𝜇Φ𝜈𝑅
′
(𝑁 )𝐹𝑎(𝐿𝑎, 𝐿𝑏 , 𝐶) = 𝑤 (12)
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𝜇Φ𝜈𝑅
′
(𝑁 )𝐹𝑐(𝐿𝑎, 𝐿𝑏 , 𝐶) = 𝑞 (13)

where 𝐹𝑎, 𝐹𝑏 , and 𝐹𝑐 denote the partial derivatives with respect to the first, second, and third

arguments of 𝐹(𝐿𝑎, 𝐿𝑏 , 𝐶). If AI pricing is adopted, then with some simplification, we learn that

the marginal product of labor types must be equal:

𝐹𝑎(𝐿𝑎, 𝐿𝑏 , 𝐶) = 𝐹𝑏(𝐿𝑎, 𝐿𝑏 , 𝐶) (14)

and the marginal rate of transformation between labor and computing is given by the ratio of the

wage to the computing price:
𝐹𝑎(𝐿𝑎, 𝐿𝑏 , 𝐶)

𝐹𝑐(𝐿𝑎, 𝐿𝑏 , 𝐶)
=

𝑤

𝑞
(15)

6.3 Functional Forms and Aggregation

Functional Forms In order to explore the model, we select some functional forms. First, we

assume that the variance of components 𝑏(𝑛) is constant until all variance is explained:

𝔼 [𝑏(𝑛)
2
] =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝜌 𝑛 ≤ 𝜈

𝜌

0 𝑛 > 𝜈

𝜌

where 𝜈 denotes the unconditional variance 𝕍[𝑧𝑗] = 𝜈𝑅(𝜈
𝜌
) since the function 𝑅(𝑁) is given by

𝑅(𝑁) =
∫

𝑁

0
𝔼 [𝑏(𝑛)

2
] 𝑑𝑛

𝜈
= min(

𝜌

𝜈
𝑁 , 1)

Second, we assume that the production function for observing 𝑁 function components are

𝐹(𝐿𝑎, 𝐿𝑏 , 𝐶) = 𝐿
𝛽

𝑏
+ (𝐴𝐿𝑎)

𝛼
𝐶

𝛾 (16)

We assume 𝛽 ∈ (0, 1), 𝛼 > 0, 𝛾 > 0 and 𝛼+𝛾 < 1. 𝐴 is labor-augmenting productivity that weights

the relative contribution of the two components. This specific production function is motivated

by the idea that computing is complementary to AI pricing workers relative to traditional pricing

workers.
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One consequence of the semi-separable production function (16) is that the adoption decision

is independent of the choice of basic pricing labor 𝐿𝑏 (so long as 𝜌𝑁 < 𝜈). If firms adopt AI pricing,

the usual first-order conditions from their optimal pricing decisions apply, but firms only choose

nonzero 𝐿𝑎 and 𝐶 if the value of the output from the AI technology (𝐴𝐿𝑎)
𝛼𝐶𝛾 is at least as large

as the associated costs. This condition is

𝜇Φ(𝐴𝐿𝑎)
𝛼
𝐶

𝛾
≥ 𝑤𝐿𝑎 + 𝑞𝐶 + 𝜒 (17)

To understand the factors that lead firms to adopt any AI pricing, define the threshold function

𝜇(𝑞) which measures the minimum value of 𝜇 such that firms are willing to use AI pricing, i.e.

the minimum 𝜇 such that condition (17) holds. We keep wages and productivity fixed, so this

threshold is only a function of the computing price 𝑞. We assume that 1 > (𝛼 + 𝛾) which ensures

that 𝜇(𝑞) can be positive; if the returns to scale in AI pricing were too large, then all firms would

always use the technology.

Lemma 3 The minimum market size 𝜇 such that firms are willing to use AI pricing 𝜇(𝑞) is increas-

ing in 𝑞.

Proof: Appendix E.1.3

Lemma 3 tells us when firms will choose to adopt AI pricing at all: if a firm has market size

𝜇 ≥ 𝜇(𝑞), then the firm is willing to use the technology. Why is 𝜇(𝑞) an increasing function?

Consider the condition (17); a larger market 𝜇 increases the incentive to use AI pricing, while a

larger 𝑞 increases the cost of doing so. If the computing cost 𝑞 decreases, then firms with smaller

market sizes 𝜇 are able to satisfy the condition and will adopt AI.

Aggregation The stylized model describes a static decision of a single monopolist facing a

market of size 𝜇. To connect the model to the empirical patterns of AI pricing adoptions, we

interpret an aggregate economy as consisting of many such monopolist firms, each indexed by

𝜇. We consider time variations in the aggregate economy as driven solely by changes in the

computing price 𝑞. We also consider cross-section variations driven by the heterogeneity in

firms’ market size 𝜇. Specifically, we assume that 𝜇 is distributed with CDF 𝐻(𝜇).
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Let the function 𝑠𝐴𝐼 (𝜇, 𝑞) denote a firm’s choice of AI share of pricing labor 𝐿𝑎
𝐿𝑎+𝐿𝑏

as a function

of its market size 𝜇 and computing price 𝑞. Then the economy-wide AI share 𝑆𝐴𝐼 (𝑞) is given by

𝐴𝐼 (𝑞) = ∫
𝜇

𝑠𝐴𝐼 (𝜇, 𝑞)𝑑𝐻(𝜇)

Firms adopt AI pricing if 𝜒(𝑞, 𝜇) ≥ 𝜒 . Let 𝜇(𝑞) denote the threshhold value of 𝜇 such that

𝜒(𝑞, 𝜇) = 𝜒 . Firms with 𝜇 ≥ 𝜇(𝑞) are willing to adopt AI pricing, so the economy-wide adopting

fraction of firms is given by

𝐴𝐼 (𝑞) = 1 − 𝐻(𝜇(𝑞))

In the quantitative results presented in Figure 5, we let market size 𝜇 be distributed Pareto

with minimum 𝜇𝑚𝑖𝑛 and shape parameter 𝜉 . In this case, the DDF is given by

[Pareto:] 1 − 𝐻(𝜇) =
(

𝜇𝑚𝑖𝑛

𝜇 )

𝜉

6.4 Stylized Facts vs Model Predictions

With the functional forms and the aggregation, we can now compare the model’s predictions to

the empirical patterns documented in Sections 3 and 4. The model describes the following four

propositions that match the stylized facts on the rise of AI pricing:

1. As the price of computing 𝑞 falls, the adoption rate of AI pricing increases (Proposition 1)

2. As the price of computing 𝑞 falls, the AI share of pricing labor increases (Proposition 2)

3. Larger firms choose a greater AI share of pricing labor (Proposition 3)

4. Firms choosing a greater AI share of pricing labor have higher markups (Proposition 4)

The remainder of this section proves these results. Throughout, we implicitly assume an interior

solution for factor observation, i.e., 𝑁 < 𝜈

𝜌
.
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6.4.1 The Rise of AI Pricing in the Time Series

Proposition 1 Adoption Rate of AI Pricing: The fraction of firms adopting AI pricing 𝐴𝐼 (𝑞)

increases when the computing price 𝑞 decreases.

Proof. Lemma 3 says that 𝜇(𝑞) is increasing in 𝑞 and the CDF 𝐻(𝜇) is necessarily an increasing

function, so the fraction of adopting firms 𝐴𝐼 (𝑞) = 1 − 𝐻(𝜇(𝑞)) must be decreasing in 𝑞.

Proposition 1 holds because the computing price 𝑞 increases the cost of AI. So when 𝑞 de-

creases, more firms are willing to pay the costs and adopt the technology.

For the next stylized fact on AI pricing labor share, Lemma 4 provides an intermediate result.

Lemma 4 Conditional on adopting AI pricing, a firm’s AI share of pricing labor 𝐿𝑎
𝐿𝑎+𝐿𝑏

increases

when the computing price 𝑞 decreases or AI productivity 𝐴 increases.

Proof: Appendix E.1.4

Lemma 4 intuitively says that as the inputs to AI pricing become cheaper, firms will do more

AI pricing relative to basic pricing, and will hire accordingly. Proposition 2 follows immediately

from the last two results.

Proposition 2 The AI Share of Pricing Labor: The economy-wide AI share of pricing labor

𝑆𝐴𝐼 (𝑞) increases when the computing price 𝑞 decreases.

Proof. Proposition 1 implies that the fraction of firms 𝐴𝐼 (𝑞) choosing non-zero AI must be

decreasing in 𝑞. Conditional on adopting AI pricing, Lemma 4 says that a firm’s AI share 𝐿𝑎
𝐿𝑎+𝐿𝑏

is decreasing in 𝑞. Given these two relationships, it must be that the economy-wide AI share

𝐴𝐼 (𝑞) = ∫
𝜇
𝑠𝐴𝐼 (𝜇, 𝑞)𝑑𝐻(𝜇) is decreasing in 𝑞.

6.4.2 AI Share of Pricing Labor, Revenue, and Markup in the Cross-Section

Firms vary by market size 𝜇. Firms selling in more submarkets have greater incentives to learn

their customers’ demand functions. Proposition 3 says that larger firms will hire a greater AI
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share of pricing labor if 𝛽 < 𝛼 + 𝛾 holds. This condition implies that AI pricing has a returns-to-

scale advantage over basic pricing, due to its complementarity with algorithmic computing.

Several intermediate lemmas are first necessary to prove this result.

Lemma 5 Conditional on adopting AI pricing, a firm’s AI share of pricing labor 𝐿𝑎
𝐿𝑎+𝐿𝑏

is strictly

increasing in its market size 𝜇 if and only if 𝛽 < 𝛼 + 𝛾 .

Proof: Appendix E.1.5

𝜇 is a measure of firm size, but one that does map directly to accounting data. The next

Lemmas are used to connect 𝜇 to firm revenues.

Lemma 6 Conditional on adopting AI pricing, the observation 𝑁 chosen by a firm is increasing in

its market size 𝜇 and decreasing in the computing price 𝑞.

Proof: Appendix E.1.6

Lemma 7 Conditional on adopting AI pricing, a firm’s revenue is increasing in its market size 𝜇,

decreasing in the computing price 𝑞, and given by

𝑦 = 𝜇
𝜈𝑅(𝑁) + 𝑧2 − 𝜂2𝜅2

4𝜂
(18)

Proof: Appendix E.1.7

Proposition 3 The AI Share of Pricing Labor and Revenue in the Cross-Section: Given a

computing price 𝑞, a firm’s AI share of pricing labor 𝐿𝑎
𝐿𝑎+𝐿𝑏

is weakly increasing in its revenue 𝑦 if

𝛽 < 𝛼 + 𝛾 .

Proof. For firms with 𝜇 < 𝜇(𝑞), revenue is increasing in 𝜇 (Lemma 7) but 𝐿𝑎 = 0 so the AI share

of pricing labor is not. For firms with 𝜇 ≥ 𝜇(𝑞), revenue is increasing in 𝜇 (Lemma 7) as is the AI

share, 𝐿𝑎
𝐿𝑎+𝐿𝑏

, if 𝛽 < 𝛼 + 𝛾 (Lemma 5). Therefore, 𝐿𝑎
𝐿𝑎+𝐿𝑏

is weakly increasing in revenue 𝑦.

As in the last section, firms operating in more markets have greater incentives to learn the

demand function by hiring pricing inputs. This makes larger firms more effective price discrimi-

nators, which allows them to charge higher markups. Because larger firms hire a greater AI share
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of pricing labor in order to take advantage of the returns to scale afforded by the computing input,

we observe a positive correlation between the AI share and markups in the cross-section.

Lemma 8 connects markups to market size, and then Proposition 4 proves the stylized fact.

Lemma 8 Conditional on adopting AI pricing, a firm’s average markup 𝑚 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒

𝐶𝑜𝑠𝑡
−1 is increasing

in its market size 𝜇 and decreasing in the computing price 𝑞.

Proof: Appendix E.1.8

Proposition 4 The AI Share of Pricing Labor and Markups in the Cross-Section: Given a

computing price 𝑞, a firm’s AI share of pricing labor 𝐿𝑎
𝐿𝑎+𝐿𝑏

is weakly increasing in its markup 𝑚 if

𝛽 < 𝛼 + 𝛾 .

Proof. For firms with 𝜇 < 𝜇(𝑞), the markup is increasing in 𝜇 (Lemma 8), but 𝐿𝑎 = 0, so the AI

share of pricing labor is not. For firms with 𝜇 ≥ 𝜇(𝑞), the markup is increasing in 𝜇 (Lemma 8) as

is the AI share, 𝐿𝑎
𝐿𝑎+𝐿𝑏

, if 𝛽 < 𝛼 +𝛾 (Lemma 5). Therefore, 𝐿𝑎
𝐿𝑎+𝐿𝑏

is weakly increasing in the markup

𝑚.

6.4.3 Model Behavior Compared to the Data

These results demonstrate that the stylized facts hold in the model. Over time, as the price of

computing falls, firms are more likely to adopt AI pricing (Proposition 1) and employ more AI

pricing labor as a share of total pricing labor (Proposition 2). If the basic pricing technology does

not have a returns-to-scale advantage (i.e. 𝛽 < 𝛼 + 𝛾 ), then larger firms will also choose higher
𝐿𝑎

𝐿𝑎+𝐿𝑏
(Proposition 3) and earn greater markups (Proposition 4).

To demonstrate these results, we compute the model with an illustrative calibration. Broadly,

the parameters are chosen to match the intertemporal and cross-sectional trends. We set 𝛽 = 0.75,

𝛼 = 0.6, and 𝛾 = 0.2, so both technologies have decreasing returns, but AI pricing has a small

scale advantage. The difference 𝛼 +𝛾 −𝛽 roughly controls the growth rate of the AI share among

firms that have adopted it. Several parameters control the level; we set Φ = 1 and 𝜌 = 1 as

normalization and match the average level of the share by setting the productivity at 𝐴 = 0.18.
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Market size is distributed Pareto; we set the shape parameter at 𝜉 = 5 and the minimum at

𝜇𝑚𝑖𝑛 = 0.15 to match the adoption growth rate and level. Then the fixed cost 𝜒 = 0.085 roughly

matches the adoption level in the cross-section.

Figure 5: The Stylized Model vs Data

(a) AI Computing Cost (b) Share of Firms Using AI Pricing

(b) AI Share of Pricing Labor (d) AI Share of Pricing in the Cross-Section

Notes: The time-series data of AI computing cost is calculated from machine learning GPU costs, the time-
series data of AI share of pricing labor is from Figure 1(a), the time-series and cross-section data of AI pricing
adoption rate are also calculated from the Lightcast data, all described in Appendix E.2. The trend fitted in
the model is an exponential function. The model takes the AI computing price trend as 𝑞 each year. The
figure plots outcomes from the stylized model parameterized with 𝛽 = 0.75, 𝛼 = 0.6, 𝛾 = 0.2, 𝐴 = 0.18,
Φ = 1, 𝜌 = 1, 𝜉 = 5, 𝜒 = 0.085, and 𝜇𝑚𝑖𝑛 = 0.15, along with the counterparts from the data. In panels (b) and
(c), 𝜇 = 1 and 𝑞 is taken as the computing cost trend. In panel (d), 𝑞 is taken as the 2023 trend value, firms
vary by 𝜇, and the data are from the 2023 cross-section of firms divided into ventiles by log sales.

Figure 5 demonstrates how these stylized facts manifest in the model. The Figure also plots
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the empirical counterparts; while the model is very stylized, there is enough flexibility in the

parameterization to match the empirical patterns closely. Panel (a) plots the computing price

𝑞, which we calculate from GPU prices as described in Appendix E.2. The time series trend in

the cost of computing is the model input that generates all of the time series variability of the

endogenous variables. Panel (b) demonstrates that as the price 𝑞 declines, a greater share of

firms are willing to pay the fixed cost to adopt AI pricing; in the plotted results, market size 𝜇 is

distributed Pareto across firms. When the computing price 𝑞 declines, AI pricing also increases

along the intensive margin because firms take advantage of the superior returns to scale; Panel

(c) captures both margins by plotting the average AI share of pricing labor in the economy over

time. Lastly, Panel (d) plots the cross-section of firms in a single year, with the computing price

set to the 2023 value. Firms with small market sizes have little revenue and are unwilling to adopt

AI pricing. Above the threshold, firms adopt and hire an even greater AI share of pricing labor

as they get bigger.

In this exercise, the falling computing price 𝑞 drives the time-series behavior. However, other

relevant trends occurred during this period, and the model is helpful for considering their impacts

as well. For example, markups have risen over this period (De Loecker, Eeckhout, and Unger, 2020;

Döpper et al., 2025), and Proposition 4 implies that this would also increase the AI share of pricing

labor over time. As another example, firms have accumulated greater amounts of data about their

customers over this period (Veldkamp and Chung, 2024); if data increases the productivity of AI

pricing 𝐴, then this trend will also increase the AI share of pricing labor over time (Lemma 4).

Finally, changes to the pricing labor market will also affect the AI share; Appendix E.3 explores

a model extension to address this in greater detail.

6.5 Effects of Demand Shifters

Thus far, we have considered how the supply side affects pricing decisions. While the simple

model is designed to understand these supply-side factors—which drive the time-series and cross-

sectional patterns documented in Sections 3 and 4—the model also predicts how demand shocks

interact with AI pricing, which links to the heterogeneous responses of stock returns to monetary

shocks conditional on AI pricing adoption and AI pricing share of labor in Section 5.
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We model a shift in aggregate demand as a change in 𝑧̄, the average demand intercept in each

market. This change affects all firms symmetrically, so we consider 𝑧̄ as representing aggregate

factors determining consumers’ willingness to consume. This should be properly done in general

equilibrium in future work to make clear statements about macroeconomic outcomes. However,

our simple partial equilibrium model still allows us to draw conclusions about the effects of de-

mand. In particular, Proposition 5 reveals that firms will react heterogeneously to changes in de-

mand in a way that is correlated with their adoption of AI pricing: specifically, firms that employ

a greater AI share of pricing labor become relatively more profitable when demand increases.

But first, Lemma 9 describes how individual firms respond to demand changes:

Lemma 9 For firms that adopt AI pricing, an increase in demand 𝑧̄ ceteris paribus increases all of:

1. All pricing inputs 𝐿𝑎, 𝐿𝑏 , 𝐶

2. The AI share of pricing labor 𝐿𝑎
𝐿𝑎+𝐿𝑏

if and only if 𝛽 < 𝛼 + 𝛾

3. Firm revenues

4. Gross profit

Proof: Appendix E.1.9

The intuition of lemma 9 is as follows. If average demand 𝑧̄ increases, there is a greater oppor-

tunity for price discrimination, so firms increase all pricing inputs to take advantage. Because AI

pricing has a return-to-scale advantage, firms disproportionately increase AI pricing labor 𝐿𝑎 rel-

ative to basic pricing labor 𝐿𝑏 . Demand is higher, so the firm sells mechanically and earns greater

gross profits; a component of this is mechanical because demand is higher, but another compo-

nent is due to more effective price discrimination thanks to firms increasing their observation of

demand factors 𝑁 .

Proposition 5 The Effects of Demand shifters: The response of gross profit 𝜋 to an increase in

𝑧̄ is greater for firms that do more AI pricing.

Proof: Appendix E.1.10
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Proposition 5 says that firms respond heterogeneously to changes in demand shifters. Firms

vary by market size 𝜇, and firms with larger market sizes are more sensitive to demand for two

reasons. The first is mechanical: an overall increase in demand raises gross profits more for larger

firms simply because they are exposed to more markets. But the second reason is specific to AI

pricing: the marginal benefit of all pricing inputs is increasing in both market size 𝜇 and demand

through Φ; moreover, market size and demand act as complements, so when one increases, it

raises the marginal effect of the other. This is why the cross-partial derivative of factor observa-

tion 𝜕2𝑁(𝑧̄,𝜇)

𝜕𝜇𝜕𝑧̄
is positive. These results link to our evidence in Section 5.

7 Conclusion

We document the rise of AI pricing and study its implications for firm performance. We show

that the importance of AI pricing has increased rapidly since 2010, and the increase in the usage

of AI pricing has been widespread across industries. Our evidence suggests that larger and more

productive firms are more likely to adopt AI pricing, and such adoption improves firm perfor-

mance and increases the sensitivity of a firm’s stock returns to monetary policy surprises. These

empirical facts can be rationalized by a stylized model where a monopolist firm with incomplete

information about the demand function invests in AI pricing to acquire information.

With continuing advances in computing technologies, especially the rapid decline in the cost

of training and using AI, we expect the importance of AI pricing to grow further. To the extent

that AI pricing can fundamentally change firms’ pricing strategies, the trends in AI pricing have

important implications for price stickiness, which could, in turn, change the traditional under-

standing of the transmission mechanism of monetary policy. An important subject for future

research is to examine the quantitative impact of AI pricing on the frequencies and magnitudes

of price adjustments using micro-level data. By establishing key stylized facts about AI pricing,

our work takes an initial step toward a promising avenue for future research.
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A Supplements to The Rise of AI Pricing

A.1 Recent News Reports and Industry Reports on AI Pricing

We read through many news reports and industry reports to understand which features are most

focused on the businesses that are actually using AI pricing or are considering adopting AI pric-

ing. Below, we provide a few examples in case the audience is interested.

• Artificial intelligence may be a game changer for pricing, PwC, 2019

• Why AI transformations should start with pricing, Boston Consulting Group, 2021

• How companies use AI to set prices, Economist, 2022

• The art of pricing in the age of AI, EY, 2023

• Harnessing AI for dynamic pricing for your business, Forbes, 2024

• The rise of VaaS: How AI ss redefining SaaS pricing models, Crunchbase News, 2024

• AI-Enhanced pricing can boost revenue growth, Bain & Company, 2024

• Overcoming retail complexity with AI-Powered pricing, Boston Consulting Group, 2024

• Key pricing trends in 2024: AI conquers the mainstream, 7Learnings, 2024
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A.2 Case Studies on Firms’ AI Pricing Adoption

To illustrate the wide range of usages of AI pricing technologies by individual firms, we provide

detailed summaries of the rough adoption patterns and uses of AI pricing within leading firms in

several different industries, including online retailing, transportation, and finance. The timelines

are roughly summarized for each firm from various newspaper and industrial reports resources,

except Uber, which reports its progress on AI pricing adoption.

A.2.1 Uber

Uber, founded in 2009, initially offered a premium black car service, allowing users to book rides

through a smartphone app. The concept quickly gained popularity, and by 2011, Uber expanded

to other U.S. cities. Its success came from the convenience of cashless transactions, dynamic

pricing, and the ability to match riders with drivers. Over the years, Uber has faced regulatory

challenges, driver protests, and competition, but has continued to grow, offering new services like

Uber X, Uber Eats, and autonomous vehicle projects. Despite controversies, Uber went public in

2019, solidifying its position as a leader in the gig economy, offering local transportation and food

delivery services. Given the nature of its real-time transportation and delivery operations, Uber

sells to various customers in a dynamic environment, making it ideally positioned to adopt AI

pricing.

Uber AI Pricing Adoptions Uber is one of the most transparent firms regarding AI pricing

changes, as it either publishes reports on changes in pricing algorithms or allows developers and

journalists to identify such changes through its developers’ APIs. This could be because Uber

needs to educate its customers to accept that AI pricing benefits them. Uber’s adoption of AI-

driven pricing systems evolves in several key stages:

1. Early Dynamic Pricing (2010-2012): Uber implemented basic dynamic pricing to balance

supply and demand early on. During periods of high demand (like holidays or inclement

weather), prices would increase to incentivize more drivers to log on and meet demand.

This early form of surge pricing was manually controlled and relatively simple, with limited

data inputs. See www.uber.com/newsroom/take-a-walk-through-surge-pricing/.

2. Algorithmic Surge Pricing (2013-2015): By the end of 2012, Uber began using algorithms

to automate surge pricing. These algorithms monitored real-time data from rides, loca-

tions, and drivers to adjust prices. The system became more efficient, using basic machine

learning models to analyze historical data, predict rider demand, and calculate the optimal

price to balance the market dynamically. AI models started incorporating geospatial data
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to predict specific regions where demand would spike. It could adjust city-wide pricing

for specific neighborhoods or events, making the system more granular and localized. See

www.uber.com/en-GB/newsroom/nye-2012-surge.

3. Advanced AI and Machine Learning (2016-2018): (1). AI Refinement: Since 2016, Uber’s AI

pricing has become more sophisticated. It started using deep learning models to refine its

dynamic pricing system, enabling it to process larger datasets in real-time. The AI learned

to predict rider and driver behavior, factoring in variables like time of day, historical pat-

terns, weather conditions, and major events. (2). Demand Prediction Models: These models

allowed Uber to forecast demand spikes before they happened, adjusting prices proactively

rather than reactively. For example, the system could anticipate demand in the lead-up to a

major event, allowing drivers to be positioned nearby in advance. See www.uber.com/en-

ZA/blog/scaling-michelangelo/.

4. Behavioral and Contextual Pricing (2019-Present): (1). Personalized Pricing: By 2019, Uber’s

AI became capable of more personalized pricing, taking into account rider-specific behav-

iors and preferences. While not fully individualized, the system factors personal data such

as ride frequency, willingness to pay, and patterns of ride usage to offer contextual pricing.

(2). Real-Time Data Integration: Uber’s AI models now integrate a multitude of real-time

data streams, including city traffic conditions, weather data, driver availability, and exter-

nal events. The system is fully autonomous, continuously learning and adjusting pricing

in real time based on the latest inputs. See www.uber.com/en-CA/blog/applied-behavioral-

science-at-scale/.

Figure A1: Timeline of AI Share of Pricing Job Posts by Uber
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A.2.2 Amazon

Amazon, founded in 1994, initially started as an online bookstore. Its offerings are rapidly expand-

ing to include electronics, clothing, and more. After going public in 1997, Amazon revolutionized

e-commerce with innovations like 1-Click shopping and Amazon Prime, which fostered customer

loyalty. The launch of Amazon Web Services in 2006 further diversified its business model, mak-

ing it a leader in cloud computing. Over the years, Amazon has embraced data-driven strategies

and algorithmic pricing to optimize operations and enhance customer experience, ultimately be-

coming one of the largest and most influential companies globally. Given the nature of its online

retailing and cloud computing operations, Amazon sells to various customers in a very dynamic

environment, making it perfectly positioned to adopt AI pricing in its operations.

Amazon AI Pricing Adoptions Amazon adopted algorithmic pricing, often called “dynamic

pricing”, early in its operations to remain competitive in the fast-paced e-commerce landscape.

The shift occurred as Amazon expanded its product catalog in the early 2000s, particularly around

2007-2008, as it sought to offer the best prices to customers across millions of products. The

company’s algorithm pricing strategy evolved as it integrated machine learning, data analytics,

and AI to adjust prices based on various factors in real-time. Its stages are as follows:

1. Initial Algorithmic Pricing (Pre-2010): Amazon began experimenting with algorithmic pric-

ing early in its history, using software to adjust prices based on factors like supply, demand,

and competitor prices. This early form of dynamic pricing was manually guided and relied

on simple algorithms to optimize pricing across its vast product catalog.

2. Introduction of Dynamic Pricing (2010-2015): Amazon developed more sophisticated dy-

namic pricing systems during this period. These systems used real-time data to adjust prices

based on user activity, product popularity, and competitive market prices. AI started play-

ing a larger role, allowing Amazon to implement more granular price adjustments across

regions, time zones, and shopping patterns. Prime Day, launched in 2015, became a show-

case of Amazon’s dynamic pricing, where prices fluctuated based on live demand spikes

and limited-time deals.

3. AI-Powered Personalization and Machine Learning (2016-2019): Amazon’s pricing strate-

gies became more AI-driven with the integration of machine learning. AI models began

analyzing customer behavior, purchasing history, and individual preferences to offer per-

sonalized pricing and recommendations. This was especially apparent in its advertising

and product suggestions, which were dynamically priced to match user intent and compet-

itive market conditions. The system also used historical and contextual data to anticipate
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demand, adjusting prices before competitors could react.

4. Advanced Predictive AI Models (2019-Present): Amazon’s AI models became highly pre-

dictive, using data from millions of transactions daily. The AI now forecasts demand spikes

(e.g., during holidays or product launches) and adjusts pricing preemptively to optimize

sales and profits. Amazon has also fine-tuned its pricing strategy for private-label products

and major events like Prime Day, where dynamic pricing becomes more aggressive. Fur-

thermore, Amazon applies AI to optimize logistics and supply chain costs, which indirectly

affects pricing.

Figure A2: Timeline of AI Share of Pricing Job Posts by Amazon

A.2.3 JPMorgan Chase

JPMorgan Chase & Co. is one of the world’s largest and most influential financial institutions,

with roots dating back to the 18th century. Formed through the merger of J.P. Morgan & Co. and

Chase Manhattan Bank in 2000, the bank operates across investment banking, financial services,

asset management, and commercial banking. Headquartered in New York City, JPMorgan Chase

serves millions of customers globally, including corporations, governments, and individuals. It

is known for its leadership in investment banking, financial innovation, and digital banking ser-

vices, playing a critical role in global finance. The company is also actively involved in financial

technology advancements and sustainable finance initiatives.

JPMorgan Chase AI Pricing Adoptions JPMorgan Chase has progressively adopted AI pric-

ing technologies through several stages. Through these stages, JPMorgan Chase has evolved

from basic AI applications in analytics to advanced, real-time AI pricing models that improve

decision-making and customer experience across its vast financial services portfolio.
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1. Initial Exploration of AI in Risk Management and Analytics (2010-2015): JPMorgan began

leveraging AI primarily in risk management, credit analysis, and fraud detection. Pricing

algorithms were still mostly rule-based; AI was used to analyze historical data and predict

trends, laying the foundation for more dynamic pricing models.

2. AI-Powered Investment Models (2015-2018): During this period, JPMorgan implemented AI

in trading and asset pricing models, particularly high-frequency trading. AI-driven pricing

in investment banking helped optimize decision-making based on real-time data, includ-

ing market conditions, liquidity, and client behavior. These models evolved to incorporate

machine learning, which allowed for continuous learning and improvement over time.

3. Machine Learning and Personalized Pricing (2018-2020): JPMorgan started applying ma-

chine learning to refine pricing strategies in consumer banking, including mortgages and

loans. By analyzing customer data, AI algorithms were used to offer personalized rates, tak-

ing into account creditworthiness, risk profiles, and market conditions. This led to more

dynamic and tailored pricing strategies.

4. Advanced AI Integration and Real-Time Data (2020-Present): AI-driven pricing systems at

JPMorgan now use real-time data across various services, including wealth management,

investment products, and even day-to-day banking fees. AI models are capable of adjusting

prices dynamically in response to market shifts, competitor actions, and customer behavior.

The bank also uses AI to forecast market conditions, which helps in setting optimal pricing

for both corporate clients and consumers.

Figure A3: Timeline of AI Share of Pricing Job Posts by JPMorgan Chase
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A.3 The Aggregate Trends in Alternative Measures

Figure A4: Aggregate Time Trends of AI Pricing, Pricing, and AI Jobs (Other Scopes)
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Notes: This figure plots the aggregate time trends of AI pricing, pricing, and AI jobs, measured in different
shares and scopes at annual frequency. The data source is Lightcast job postings. AI job postings are mea-
sured following exactly Acemoglu et al. (2022)’s narrow category classification. Pricing jobs are measured
in three scopes. The first scope only includes the most narrowly defined pricing jobs, which must include
exactly the keyword “pricing” in its job title. The second scope includes jobs with the keyword “pricing”
in their specific job skill requirements. Finally, the third scope includes jobs with the keyword “pricing”
in the main body of the job description, which is the most broadly defined pricing jobs. We combine all
three scopes to generate an all-scope measure. Finally, we extract AI pricing jobs at the intersection of both
AI-related and pricing jobs in all three scopes. With all these measures, we could construct a penal of job
postings for firm 𝑗 at time 𝑡. The measures include the number of jobs 𝑁𝑗 ,𝑡 , the number of AI jobs 𝑁𝐴𝐼

𝑗,𝑡 , the
number of pricing jobs 𝑁 𝑃𝑠

𝑗 ,𝑡 with scope 𝑠 = {1, 2, 3, 𝑎𝑙𝑙}, and the number of AI pricing jobs 𝑁𝐴𝑃𝑠
𝑗 ,𝑡 with scope

𝑠 = {1, 2, 3, 𝑎𝑙𝑙}. We aggregate all measures to the firm level 𝑆ℎ𝑎𝑟𝑒𝑥/𝑦𝑗,𝑡 = 𝑁 𝑥
𝑗,𝑡/𝑁

𝑦

𝑗,𝑡 .

9



A.4 Leading Firms in AI Pricing

Second, we present the top thirty leading firms in the absolute number of AI pricing job postings

along with two relative shares in Table A1, measured across all scopes from 2010 to 2024Q1. The

table lists each company’s name, the number of AI pricing job postings, the ratio of AI pricing to

AI job postings, and the ratio of AI pricing to pricing job postings.

The top three firms with the most AI pricing job posts are Deloitte, Amazon, and Uber. De-

loitte leads with 1,672 total AI pricing job postings from 2010 to 2024Q1, though these make up

only 6.9% of their AI job posts and 2.4% of their pricing job posts. Amazon follows with 1,198 AI

pricing jobs, making up 15.0% of their pricing jobs, indicating significant AI integration in their

pricing strategies. Uber, with 664 AI pricing jobs, demonstrates its high intensity of AI pricing

adoption, with 21.1% of their AI jobs and 46.8% of their pricing jobs dedicated to AI, suggesting

their dominating strategy of leveraging AI for pricing optimization.

The list also suggests a wide range of applications of AI pricing across industries: Deloitte

in professional services, Amazon in technology and e-commerce, and Uber in transportation and

mobility. Additionally, RealReal and Wayfair, in the retail and e-commerce sectors, show high

percentages of AI pricing jobs within their pricing roles at 43.6% and 25.7%, respectively. This

indicates their strong reliance on AI to enhance pricing strategies in highly competitive and dy-

namic markets. Traditional financial institutions like JPMorgan Chase and Wells Fargo are also

on the list despite having relatively lower shares of AI pricing jobs at 2.8% and 3.3%, respectively.

Notably, Rippling, a cloud-based human resources (HR) software company, stands out with ex-

ceptionally high shares of AI pricing jobs, at 74.1% of AI jobs and 94.5% of pricing jobs, signaling

a deep integration of AI in their business of potential wage-setting services provided to their

customers.1 This heterogeneity reveals the substantial applicability and emerging stages of AI

adoption in pricing across industries and firms.

1Different from Amazon and Uber who use AI pricing on its own products, Rippling and Deloitte’s AI pricing
adoption could be more used on providing pricing strategies to its customers. For instance, Deloitte provides trans-
fer pricing services for multinationals on tax avoidance. For our firm performance in later sections, we provide
robustness checks to exclude these firms that hire AI pricing workers to provide services.
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Table A1: Top 30 Leading Firms in AI pricing job Postings

Firm No. of AI pricing jobs AI Pricing/AI Jobs AI Pricing/Pricing Jobs

Deloitte 1672 6.9% 2.4%
Amazon 1198 1.7% 15.0%
Uber 664 21.1% 46.8%
Johnson & Johnson 611 8.5% 7.2%
Accenture 427 2.8% 2.0%
The RealReal 388 7.9% 43.6%
JPMorgan Chase 344 2.7% 2.8%
CyberCoders 337 0.9% 2.8%
USAA 281 7.7% 5.8%
Capital One 273 1.1% 8.1%
Wells Fargo 251 2.2% 3.3%
Wayfair 246 18.3% 25.7%
IBM 200 1.0% 2.8%
General Motors 195 2.5% 6.0%
PricewaterhouseCoopers 186 2.5% 0.6%
Verizon Communications 147 1.7% 3.1%
UnitedHealth Group 143 2.6% 0.6%
Kforce 142 1.7% 1.2%
The Judge Group 133 3.7% 3.0%
CarMax 132 37.0% 13.9%
Target 131 10.5% 3.8%
XPO Logistics 129 28.3% 5.4%
Travelers 127 2.7% 1.2%
KPMG 119 1.7% 1.4%
Health Services Advisory Group 119 9.6% 20.6%
Zurich Insurance 114 25.4% 5.2%
Verint Systems 113 4.4% 29.6%
CVS Health 110 3.3% 1.6%
Humana 106 1.5% 1.6%
Rippling 103 74.1% 94.5%

Notes: This table shows the leading firms in the number of AI pricing job posts, measured in all scopes, from
2010 to 2024Q1. The data source is Lightcast job postings. AI job postings are measured following exactly
Acemoglu et al. (2022)’s narrow category classification. Pricing jobs are measured in three scopes. The first
scope only includes the most narrowly defined pricing jobs, which must include exactly the keyword “pricing”
in its job title. The second scope includes jobs with the keyword “pricing” in their specific job skill requirements.
Finally, the third scope includes jobs with the keyword “pricing” in the main body of the job description, which
is the most broadly defined pricing jobs. We combine all three scopes to generate an all-scope measure. Finally,
we extract AI pricing jobs at the intersection of both AI-related and pricing jobs in all three scopes.

11



A.5 Leading Firms in AI Pricing in Alternative Measures

Below, we check the top thirty leading firms in AI pricing job postings in different scopes.

Table A2: Top 30 Leading Firms in AI pricing jobs (Scope 1)

Company No. AI pricing jobs AI Pricing/AI Jobs AI Pricing/Pricing Jobs

Uber 256 8.1% 58.3%
Amazon 231 0.3% 16.1%
Johnson & Johnson 93 1.3% 16.1%
JPMorgan Chase 54 0.4% 3.0%
CarMax 47 13.2% 43.1%
Target 47 3.8% 8.7%
Zurich Insurance 37 8.3% 6.9%
XPO Logistics 35 7.7% 6.7%
Opendoor 32 30.8% 21.2%
The RealReal 28 0.6% 47.5%
CVS Health 28 0.8% 4.3%
Ingram Micro 27 24.8% 30.0%
Wayfair 27 2.0% 19.3%
Cigna 26 1.9% 13.9%
Sap&Sap Corp 25 1.3% 32.9%
Walmart 25 0.4% 6.3%
Staples 23 4.3% 2.7%
Travelers 21 0.4% 5.0%
Nordstrom 21 3.9% 72.4%
Bloomberg 21 1.2% 8.3%
Kosmix 20 13.0% 100.0%
Kforce 20 0.2% 1.5%
Citigroup 19 0.4% 3.3%
Matson 18 20.7% 72.0%
Thomas Publishing 17 81.0% 100.0%
Affirm 17 6.1% 28.8%
McKinsey 16 2.1% 25.4%
Expedia Group 15 1.2% 7.8%
PricewaterhouseCoopers 15 0.2% 0.7%
Automation Anywhere 15 1.4% 88.2%

Scope 1: Pricing in Job Titles Table A2 presents the top 30 companies leading in AI pricing

jobs (Scope 1) based on three key metrics. Uber ranks first with 256 AI pricing jobs, followed

by Amazon with 231, while companies like Johnson & Johnson (93), JPMorgan Chase (54), and

CarMax (47) also feature prominently. The AI Pricing/AI Jobs Ratio, which reflects the propor-

tion of AI pricing jobs out of a company’s total AI jobs, is highest at Thomas Publishing (81%),

Opendoor (30.8%), and Ingram Micro (24.8%). Additionally, the AI Pricing/Pricing Jobs Ratio,

which shows the share of AI pricing jobs among total pricing jobs, is led by Kosmix and Thomas

Publishing, both at 100%, followed by Automation Anywhere at 88.2%. While Uber and Amazon

dominate in absolute numbers, smaller firms like Kosmix and Thomas Publishing have a much

12



higher concentration of AI pricing jobs than their total AI and pricing jobs.

Table A3: Top 30 Leading Firms in AI pricing jobs (Scope 2)

Company No. AI pricing jobs AI Pricing/AI Jobs AI Pricing/Pricing Jobs

Deloitte 1038 4.3% 1.9%
Accenture 344 2.3% 5.2%
Amazon 299 0.4% 10.7%
Capital One 228 0.9% 8.6%
Johnson & Johnson 222 3.1% 6.8%
PricewaterhouseCoopers 123 1.7% 0.6%
Verint Systems 113 4.4% 39.6%
KPMG 82 1.2% 3.0%
Wayfair 69 5.1% 32.2%
IBM 68 0.3% 2.3%
Goldman Sachs 61 3.2% 8.4%
Postmates 61 26.6% 92.4%
Nvidia 59 0.7% 37.6%
UnitedHealth Group 59 1.1% 1.6%
JPMorgan Chase 57 0.5% 1.6%
Wells Fargo 57 0.5% 2.1%
The RealReal 49 1.0% 28.5%
Bank of America 46 0.4% 3.1%
Ernst & Young 45 2.5% 1.1%
Automation Anywhere 45 4.2% 52.9%
CarMax 38 10.6% 24.5%
CyberCoders 37 0.1% 1.8%
Zurich Insurance 37 8.3% 10.0%
XPO Logistics 36 7.9% 6.7%
Uber 35 1.1% 15.5%
BDO 34 12.1% 4.3%
Lumen Technologies 33 1.4% 6.3%
Kforce 32 0.4% 1.3%
Cognizant Technology Solutions 31 1.6% 11.9%
Celestica 30 52.6% 20.8%

Scope 2: Pricing in Skill Requirements Table A3 highlights the top 30 companies leading

in AI pricing jobs (Scope 2), focusing on the number of AI pricing jobs, the percentage of AI

pricing jobs compared to total AI jobs, and the share of AI pricing jobs within overall pricing roles.

Deloitte tops the list with 1,038 AI pricing jobs, followed by Accenture with 344, Amazon with 299,

Capital One with 228, and Johnson & Johnson with 222. Celestica has the highest proportion of

AI pricing jobs relative to its total AI jobs at 52.6%, with Postmates (26.6%) and Wayfair (5.1%) also

showing strong AI pricing job concentration. In terms of AI pricing jobs within overall pricing

roles, Postmates leads with 92.4%, followed by Automation Anywhere (52.9%) and Verint Systems

(39.6%). While Deloitte and Accenture have the highest number of AI pricing jobs, companies like

Postmates and Celestica have a much higher concentration of AI pricing jobs in their categories.
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Table A4: Top 30 Leading Firms in AI pricing jobs (Scope 3)

Company No. AI pricing jobs AI Pricing/AI Jobs AI Pricing/Pricing Jobs

Amazon 668 0.9% 17.7%
Deloitte 632 2.6% 4.6%
Uber 373 11.9% 49.4%
The RealReal 311 6.3% 47.2%
Johnson & Johnson 296 4.1% 6.4%
CyberCoders 293 0.8% 3.1%
USAA 263 7.2% 7.4%
JPMorgan Chase 233 1.8% 3.2%
General Motors 190 2.5% 7.3%
Wells Fargo 189 1.6% 4.3%
Wayfair 150 11.2% 24.8%
IBM 129 0.6% 3.3%
Verizon Communications 127 1.5% 5.3%
Health Services Advisory Group 119 9.6% 20.6%
The Judge Group 118 3.3% 3.3%
Humana 104 1.5% 2.4%
Rippling 103 74.1% 98.1%
PayPal 99 6.2% 6.7%
Insurance Services Office 96 7.7% 61.9%
Kforce 90 1.1% 1.2%
Travelers 83 1.8% 1.0%
Accenture 82 0.5% 0.6%
UnitedHealth Group 77 1.4% 0.4%
The Boston Consulting Group (BCG) 76 4.8% 5.5%
Bloomberg 74 4.3% 7.5%
Target 72 5.8% 2.8%
Liberty Mutual 66 7.0% 6.0%
Walmart 63 0.9% 4.6%
Nationwide 60 9.5% 6.7%
Chewy 60 5.4% 14.1%

Scope 3: Pricing in Job Description Table A4 highlights the top 30 companies leading in AI

pricing jobs (Scope 3), focusing on the number of AI pricing jobs, the percentage of AI pricing

jobs relative to total AI jobs, and the share of AI pricing jobs within overall pricing roles. Amazon

leads with 668 AI pricing jobs, followed by Deloitte with 632, Uber with 373, The RealReal with

311, and Johnson & Johnson with 296. Rippling has the highest concentration of AI pricing jobs

relative to its total AI jobs at 74.1%, with Uber (11.9%) and Wayfair (11.2%) also showing strong

AI pricing job concentrations. In terms of AI pricing jobs within overall pricing roles, Rippling

leads with 98.1%, followed by Insurance Services Office (61.9%) and Uber (49.4%). While Amazon

and Deloitte have the most AI pricing jobs, companies like Rippling and Uber have a significantly

higher concentration of AI pricing jobs within their total AI and pricing job categories.
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A.6 Variations Across Industries of AI Pricing

The below figure includes two additional plots as an addition to Figure 2 in the paper.

Figure A5: Variations Across Two Digit Industry Sector
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Notes: This figure plots the across-industry variations of AI pricing, pricing, and AI jobs, measured in different shares
and scopes for two periods: 2010-2015 and 2016-2024. The data source is Lightcast job postings. AI job postings are
measured following exactly Acemoglu et al. (2022)’s narrow category classification. Pricing jobs are measured in
three scopes. The first scope only includes the most narrowly defined pricing jobs, which must include exactly the
keyword “pricing” in its job title. The second scope includes jobs with the keyword “pricing” in their specific job
skill requirements. Finally, the third scope includes jobs with the keyword “pricing” in the main body of the job
description, which is the most broadly defined pricing jobs. We combine all three scopes to generate an all-scope
measure. Finally, we extract AI pricing jobs at the intersection of both AI-related and pricing jobs in all three scopes.
With all these measures, we could construct a penal of job postings for firm 𝑗 at time 𝑡. The measures include number
of jobs 𝑁𝑗 ,𝑡 , number of AI jobs 𝑁𝐴𝐼

𝑗,𝑡 , number of pricing jobs 𝑁 𝑃𝑠
𝑗 ,𝑡 with scope 𝑠 = {1, 2, 3, 𝑎𝑙𝑙}, and number of AI pricing

jobs 𝑁𝐴𝑃𝑠
𝑗 ,𝑡 with scope 𝑠 = {1, 2, 3, 𝑎𝑙𝑙}. We aggregate all measures to the firm level 𝑆ℎ𝑎𝑟𝑒𝑥/𝑦𝑗,𝑡 = 𝑁 𝑥

𝑗,𝑡/𝑁
𝑦

𝑗,𝑡 . To plot the
bar plots, we combine all job postings within the two periods, 2010-2015 and 2016-2024.
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Below, we check the variations across two-digit level industries in AI pricing job postings

in different scopes. In all three different scopes, we see a dominant growth of AI pricing jobs

in transportation, information, finance, and business services. In contrast, industries such as

agriculture, mining, and construction maintained consistently low shares of AI pricing jobs across

time, indicating limited applicability or slower adoption of AI in pricing within these sectors.

Figure A6: Variations Across Two Digit Industry Sector (Scope 1)
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Notes: This figure plots the across-industry variations of AI pricing, pricing, and AI jobs, measured in different
shares and scopes for two periods: 2010-2015 and 2016-2024. The data source is Lightcast job postings. AI
job postings are measured following exactly Acemoglu et al. (2022)’s narrow category classification. Pricing
jobs only include the most narrowly defined pricing jobs, which must include exactly the keyword “pricing”
in their job title. The construction of the ratios follows the same process as in Table 2 in the main paper.
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Figure A7: Variations Across Two Digit Industry Sector (Scope 2)
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Notes: This figure plots the across-industry variations of AI pricing, pricing, and AI jobs, measured in different
shares and scopes for two periods: 2010-2015 and 2016-2024. The data source is Lightcast job postings. AI job
postings are measured following exactly Acemoglu et al. (2022)’s narrow category classification. Pricing jobs
only include jobs with the keyword “pricing” in their specific job skill requirements. The construction of the
ratios follows the same process as in Table 2 in the main paper.
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Figure A8: Variations Across Two Digit Industry Sector (Scope 3)
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(a) Share of AI Pricing in Pricing Jobs (Scope 3)
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Notes: This figure plots the across-industry variations of AI pricing, pricing, and AI jobs, measured in different
shares and scopes for two periods: 2010-2015 and 2016-2024. The data source is Lightcast job postings. AI job
postings are measured following exactly Acemoglu et al. (2022)’s narrow category classification. Pricing jobs
only include jobs with the keyword “pricing” in the main body of the job description, which is the most broadly
defined pricing job. The construction of the ratios follows the same process as in Table 2 in the main paper.
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B Supplements to Firm-level Determinants

B.1 Distributions of AI Pricing Adopters and Non-Adopters

Other Measures of Firm Size Figure B1 presents the size distributions of AI pricing adopters

and non-adopters in 2010, comparing their total assets (left) and employee numbers (right) in

log scale. The histograms show that adopters (in red) tend to have larger total assets and more

employees than non-adopters (in blue), indicating that firms that adopt AI pricing technologies

tend to be larger. The notes clarify that adopters are firms that have posted at least one AI pricing

job by 2024 Q1, while non-adopters have not done so.

Figure B1: Size Distributions of AI Pricing Adopters and Non-Adopters In the Year 2010
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Notes: An adopter (1𝐴𝑃
𝑗,2024𝑄1 = 1) is a firm 𝑗 that posted at least one AI pricing job since the beginning of

our data sample until 2024Q1; Non-Adopter (1𝐴𝑃
𝑗,2024𝑄1 = 0) is a firm 𝑗 that never posted AI pricing job since

the beginning of our data sample until 2024Q1. We provide a comparison to AI adoption in Figure B5.

Financial Conditions Measures Figure B2 shows the financial distributions of AI pricing

adopters and non-adopters in 2010, focusing on leverage (left) and cash/assets ratios (right). The

leverage distribution (a) reveals that non-adopters (blue) generally have higher leverage com-

pared to adopters (red), especially near zero. The cash/assets distribution (b) indicates that non-

adopters tend to have slightly higher cash-to-asset ratios, though the differences are less pro-

nounced. Adopters appear to have a more spread-out distribution across both metrics. As in

the previous figure, adopters are defined as firms posting AI pricing jobs by 2024 Q1, and non-

adopters have not done so.

Operational Conditions Measures Figure B3 illustrates the operational distributions of AI

pricing adopters and non-adopters in 2010, focusing on Tobin’s Q (left) and markup (right) in

log scale. Tobin’s Q distribution (a measure of firm value) shows that adopters (red) and non-

19



Figure B2: Financial Distributions of AI Pricing Adopters and Non-Adopters In the Year 2010
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Notes: An adopter (1𝐴𝑃
𝑗,2024𝑄1 = 1) is a firm 𝑗 that posted at least one AI pricing job since the beginning of

our data sample until 2024Q1; Non-Adopter (1𝐴𝑃
𝑗,2024𝑄1 = 0) is a firm 𝑗 that never posted AI pricing job since

the beginning of our data sample until 2024Q1. We provide a comparison of AI adoption in Figure B6.

adopters (blue) have relatively similar distributions, with a slight tendency for adopters to have

higher values. The markup distribution (b) also shows similar patterns between the two groups,

with both concentrated around zero. As with previous figures, adopters are firms that posted AI

pricing jobs by 2024 Q1, while non-adopters have not.

Figure B3: Operational Distributions of AI Pricing Adopters and Non-Adopters In the Year 2010
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Notes: An adopter (1𝐴𝑃
𝑗,2024𝑄1 = 1) is a firm 𝑗 that posted at least one AI pricing job since the beginning of

our data sample until 2024Q1; Non-Adopter (1𝐴𝑃
𝑗,2024𝑄1 = 0) is a firm 𝑗 that never posted AI pricing job since

the beginning of our data sample until 2024Q1. We provide a comparison to AI adoption in Figure B7.
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B.2 Distributions of General AI Adopters and Non-Adopters

Size, Productivity, and Age Measures Figure B4 shows three distributions comparing AI

adopters and non-adopters in 2010 across different metrics. Graph (a) displays the size distribu-

tion based on log(Sales), where AI adopters tend to have higher sales figures than non-adopters.

Graph (b) presents the TFP (Total Factor Productivity) distribution, indicating that AI adopters

generally have higher TFP values. Graph (c) illustrates the age distribution of firms, suggesting

that AI adopters are slightly older on average than non-adopters. In all three graphs, the distribu-

tions for AI adopters (shown in red) are shifted somewhat to the right compared to non-adopters

(shown in blue), implying that firms adopting AI tend to be larger, more productive, and slightly

older than those not adopting AI.

Figure B4: Distributions of AI Adopters and Non-Adopters In the Year 2010
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Notes: These figures compare AI adoption to the AI pricing adoption distribution in Figure 4. An AI adopter
(1𝐴𝐼

𝑗,2024𝑄1 = 1) is a firm 𝑗 that posted at least one AI job since the beginning of our data sample until 2024Q1;
Non-Adopter (1𝐴𝐼

𝑗,2024𝑄1 = 0) is a firm 𝑗 that never posted AI job since the beginning of our data sample until 2024Q1.

Other Measures of Firm Size Figure B5 compares the size distributions of AI adopters and

non-adopters in 2010 using two metrics: total assets and number of employees. Graph (a) shows

the distribution of log(Total Asset), while graph (b) displays the distribution of log(Employee).

In both graphs, the distribution for AI adopters (shown in red) is shifted to the right compared

to non-adopters (shown in blue). This indicates that firms adopting AI tend to have larger total

assets and more employees than those not adopting AI. The difference is particularly pronounced

in the total asset distribution, where AI adopters have a noticeably higher concentration in the

upper ranges. Overall, the graphs suggest that larger companies, regarding assets and workforce,

were more likely to adopt AI technologies.

Financial Conditions Measures Figure B6 compares the financial distributions of AI adopters

and non-adopters in 2010 using two metrics: leverage and cash/asset ratio. Graph (a) shows the

leverage distribution, where AI adopters and non-adopters have similar patterns, with a high
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Figure B5: Size Distributions of AI Pricing Adopters and Non-Adopters In the Year 2010
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Notes: These figures compare AI adoption to the AI pricing adoption distribution in Figure B1. An AI adopter
(1𝐴𝐼

𝑗,2024𝑄1 = 1) is a firm 𝑗 that posted at least one AI job since the beginning of our data sample until 2024Q1; Non-
Adopter (1𝐴𝐼

𝑗,2024𝑄1 = 0) is a firm 𝑗 that never posted AI job since the beginning of our data sample until 2024Q1.

Figure B6: Financial Distributions of AI Pricing Adopters and Non-Adopters In the Year 2010
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Notes: These figures compare AI adoption to the AI pricing adoption distribution in Figure B2. An AI adopter
(1𝐴𝐼

𝑗,2024𝑄1 = 1) is a firm 𝑗 that posted at least one AI job since the beginning of our data sample until 2024Q1; Non-
Adopter (1𝐴𝐼

𝑗,2024𝑄1 = 0) is a firm 𝑗 that never posted AI job since the beginning of our data sample until 2024Q1.

concentration of firms at lower leverage levels. However, AI adopters (in red) show a slightly

higher density at very low leverage levels. Graph (b) displays the cash/asset distribution, where

both groups again show similar overall patterns, with a high concentration of firms having lower

cash/asset ratios. There’s a subtle indication that AI adopters might have a slightly more dis-

persed distribution in cash/asset ratios, with a bit more representation in higher ratio ranges.

Overall, the financial distributions suggest only minor differences between AI adopters and non-
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adopters regarding leverage and cash/asset ratios, with AI adopters potentially having slightly

lower leverage and more varied cash/asset positions.

Operational Conditions Measures Figure B7 compares the operational distributions of AI

adopters and non-adopters in 2010 using two metrics: Log(Tobin’s Q) and Log(Markup). Graph (a)

shows the Log(Tobin’s Q) distribution, where AI adopters (in red) have a slightly higher and more

right-skewed distribution compared to non-adopters (in blue), suggesting that AI adopters tend to

have higher market valuations relative to their book values. Graph (b) displays the Log(Markup)

distribution, which is more tightly clustered around 0 for both groups, but AI adopters show a

slightly higher density in the positive range, indicating potentially higher profit margins. In both

graphs, the differences between adopters and non-adopters are subtle but noticeable, with AI

adopters generally showing slightly more favorable operational metrics.

Figure B7: Operational Distributions of AI Pricing Adopters and Non-Adopters In the Year 2010
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Notes: These figures compare AI adoption to the AI pricing adoption distribution in Figure B3. An AI adopter
(1𝐴𝐼

𝑗,2024𝑄1 = 1) is a firm 𝑗 that posted at least one AI job since the beginning of our data sample until 2024Q1; Non-
Adopter (1𝐴𝐼

𝑗,2024𝑄1 = 0) is a firm 𝑗 that never posted AI job since the beginning of our data sample until 2024Q1.
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B.3 Firm-level Determinants of AI Pricing Adoption (Probit Regression)

Table B1 presents the probit regression results for the dependent variable, the adoption dummy

1
𝐴𝑃
𝑗,2024𝑄1. Standard errors are in parentheses. Significance: * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. All in-

dependent variables are winsorized at the top and bottom 1% at the quarter frequency. Industry

fixed effects are controlled at the two-digit NAICS level. The probit regression results are gener-

ally consistent with those in the main paper, indicating that size, productivity, and R&D intensity

in 2010 are positively correlated with AI pricing adoption from 2010 to 2024 Q1.

Table B1: Firm-level Determinants of AI Pricing Adoption (Probit Regression)

AI Pricing Adopter Dummy Indicator, 2010-2015Q4 (1𝐴𝑃
𝑗,2015𝑄4 = 1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 0.462*** 0.511***
(0.013) (0.018)

Log TFP 2010 0.502*** 0.132***
(0.027) (0.042)

Log Age 2010 0.128*** -0.057**
(0.022) (0.026)

Tobin’s Q 2010 0.041*** 0.080***
(0.012) (0.017)

Log Markup 2010 0.071** 0.075
(0.029) (0.060)

R&D/Sales 2010 -0.005 1.745***
(0.007) (0.308)

ROA 2010 -1.724*** -0.088
(0.546) (0.792)

Cash/Assets 2010 -0.484*** -0.206
(0.103) (0.183)

Debt/Assets 2010 0.288*** -0.226**
(0.080) (0.114)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 7748 7040 7278 7765 7728 7777 7756 7767 7279 6316
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B.4 Firm-level Determinants of AI Pricing Adoption in Sub-periods

To test whether the firm-level determinants of AI pricing adoption are consistent over time, we

cut our sample into two sub-periods as we document the across-industry variations: 2010-2015

and 2016-2024. The two sets of specifications are as follows:

Sub-period 1: {1
𝐴𝑃
𝑗,2015𝑄4, 𝐴𝑃𝑁𝑗 ,2015𝑄4, 𝐴𝑃𝑆𝑗 ,2015𝑄4} = 𝛽𝑥𝑗 ,2010𝑞 + 𝛾𝑠 + 𝛿𝑞 + 𝜖𝑗𝑞 ,

Sub-period 2: {1
𝐴𝑃
𝑗,2024𝑄1, 𝐴𝑃𝑁𝑗 ,2024𝑄1, 𝐴𝑃𝑆𝑗 ,2024𝑄1} = 𝛽𝑥𝑗 ,2016𝑞 + 𝛾𝑠 + 𝛿𝑞 + 𝜖𝑗𝑞 ,

where 𝑗 represents firms, 𝑞 is one of the four quarters, and 𝑠 refers to two-digit NAICS sectors.

The dependent variables are firm 𝑗 ’s AI pricing adoption indicator, which equals one if the firm

posts at least one AI pricing job post within the subperiod. The independent variables represents

firm 𝑗 ’s characteristic in quarter 𝑞 of 2010 or 2016, for 𝑞 = 𝑄1, 𝑄2, 𝑄3, 𝑄4. The characteristics

examined include logged sales, logged TFP, logged age, Tobin’s Q, logged markup, the ratio of

R&D to sales, ROA, cash-to-assets ratio, and debt-to-assets ratio, all winsorized at the top and

bottom 1% at the year quarter frequency.2 We also include industry fixed effects (𝛾𝑠) and quarter

fixed effects (𝛿𝑞) to control for unobserved heterogeneity.

Sub-period 1: 2010-2015 Tables B2, B3, and B4 report the results of sub-period 1 for depen-

dent variables {1𝐴𝑃
𝑗,2015𝑄4, 𝐴𝑃𝑁𝑗 ,2015𝑄4, 𝐴𝑃𝑆𝑗 ,2015𝑄4}, respectively. Standard errors are in parentheses.

Significance: * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. All independent variables are winsorized at the top

and bottom 1% at the year quarter frequency. Industry fixed effects are controlled at the two-digit

NAICS level. The sub-period results are generally consistent with the results in the main paper.

Sub-period 2: 2016-2024 Tables B5, B6, and B7 report the results of sub-period 2 for depen-

dent variables {1𝐴𝑃
𝑗,2024𝑄1, 𝐴𝑃𝑁𝑗 ,2024𝑄1, 𝐴𝑃𝑆𝑗 ,2024𝑄1}, respectively. Standard errors are in parentheses.

Significance: * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. All independent variables are winsorized at the top

and bottom 1% at the year quarter frequency. Industry fixed effects are controlled at the two-digit

NAICS level. The sub-period results are generally consistent with the results in the main paper.

2Tobin’s Q is calculated as tobinq = (prccq × cshoq − ceqq + atq)/atq, where the market value of the firm’s assets
(prccq × cshoq) is adjusted by subtracting the book value of equity (ceqq) and adding total assets (atq), then divided
by total assets (atq). Makrup is calculated as the ratio of sales to costs of goods sode.
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Table B2: Firm-level Determinants of AI Pricing Adoption

AI Pricing Adopter Dummy Indicator, 2010-2015Q4 (1𝐴𝑃
𝑗,2015𝑄4 = 1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 0.022*** 0.023***
(0.001) (0.002)

Log TFP 2010 0.032*** 0.016***
(0.003) (0.004)

Log Age 2010 0.013*** 0.004
(0.003) (0.003)

Tobin’s Q 2010 -0.000 -0.004*
(0.001) (0.002)

Log Markup 2010 0.002 0.004
(0.003) (0.006)

R&D/Sales 2010 -0.000 0.063**
(0.000) (0.029)

ROA 2010 -0.065* 0.035
(0.039) (0.050)

Cash/Assets 2010 -0.006 0.022
(0.011) (0.017)

Debt/Assets 2010 0.010 -0.011
(0.009) (0.011)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 7768 7060 7304 7785 7748 7797 7776 7787 7299 6342
adj. 𝑅2 0.067 0.035 0.021 0.017 0.017 0.017 0.017 0.017 0.014 0.072

Table B3: Firm-level Determinants of Cumulative AI Pricing Job Postings

Total AI pricing job Postings, 2010-2015Q4 (𝐴𝑃𝑁𝑗 ,2015𝑄4)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 0.220*** 0.198***
(0.027) (0.033)

Log TFP 2010 0.456*** 0.238***
(0.069) (0.082)

Log Age 2010 0.076 0.063
(0.062) (0.058)

Tobin’s Q 2010 0.129*** 0.022
(0.036) (0.041)

Log Markup 2010 0.048 0.008
(0.078) (0.127)

R&D/Sales 2010 0.000 1.222*
(0.003) (0.625)

ROA 2010 -0.537 0.051
(0.931) (1.078)

Cash/Assets 2010 0.298 -0.156
(0.265) (0.361)

Debt/Assets 2010 0.290 0.179
(0.189) (0.237)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 7768 7060 7304 7785 7748 7797 7776 7787 7299 6342
adj. 𝑅2 0.019 0.016 0.012 0.012 0.010 0.010 0.010 0.010 0.005 0.018
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Table B4: Firm-level Determinants of Cumulative AI Pricing Job Postings Intensity

Total AI pricing job Postings/Total Pricing Job Postings, 2010Q1-2015Q4 (𝐴𝑃𝑆𝑗 ,2015𝑄4)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 -0.001* -0.001***
(0.000) (0.001)

Log TFP 2010 0.003*** 0.005***
(0.001) (0.001)

Log Age 2010 -0.003*** -0.003***
(0.001) (0.001)

Tobin’s Q 2010 -0.000 -0.001**
(0.000) (0.001)

Log Markup 2010 0.001 -0.004**
(0.001) (0.002)

R&D/Sales 2010 0.000 0.030***
(0.000) (0.010)

ROA 2010 -0.008 -0.025
(0.019) (0.026)

Cash/Assets 2010 0.006* -0.003
(0.004) (0.006)

Debt/Assets 2010 0.001 0.004
(0.003) (0.003)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 5601 5267 5320 5607 5588 5611 5601 5607 5297 4782
adj. 𝑅2 0.002 0.003 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.009

Table B5: Firm-level Determinants of AI Pricing Adoption

AI Pricing Adopter Dummy Indicator, 2016-2024Q1 (1𝐴𝑃
𝑗,2024𝑄1 = 1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2016 0.081*** 0.113***
(0.002) (0.003)

Log TFP 2016 0.100*** 0.012*
(0.005) (0.007)

Log Age 2016 0.037*** 0.001
(0.005) (0.005)

Tobin’s Q 2016 0.023*** 0.021***
(0.003) (0.003)

Log Markup 2016 0.011** 0.036***
(0.004) (0.008)

R&D/Sales 2016 -0.000 0.034***
(0.000) (0.008)

ROA 2016 -0.341*** 0.398***
(0.066) (0.115)

Cash/Assets 2016 -0.063*** 0.124***
(0.020) (0.031)

Debt/Assets 2016 0.094*** -0.055***
(0.017) (0.020)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 9179 8004 8641 9324 9160 9338 9325 9328 8734 7228
adj. 𝑅2 0.197 0.063 0.030 0.034 0.026 0.026 0.029 0.027 0.028 0.253
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Table B6: Firm-level Determinants of Cumulative AI Pricing Job Postings

Total AI pricing job Postings, 2016-2024Q1(𝐴𝑃𝑁𝑗 ,2024𝑄1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2016 3.139*** 5.028***
(0.157) (0.268)

Log TFP 2016 4.114*** 0.229
(0.450) (0.622)

Log Age 2016 0.958** -0.482
(0.379) (0.447)

Tobin’s Q 2016 0.984*** 0.828***
(0.208) (0.311)

Log Markup 2016 0.148 1.076
(0.357) (0.774)

R&D/Sales 2016 -0.001 1.332*
(0.003) (0.790)

ROA 2016 -10.167* 11.496
(5.279) (10.781)

Cash/Assets 2016 1.215 12.525***
(1.569) (2.864)

Debt/Assets 2016 1.736 -4.511**
(1.387) (1.885)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 9179 8004 8641 9324 9160 9338 9325 9328 8734 7228
adj. 𝑅2 0.054 0.022 0.014 0.015 0.013 0.013 0.013 0.013 0.013 0.075

Table B7: Firm-level Determinants of Cumulative AI Pricing Job Postings Intensity

Total AI pricing job Postings/Total Pricing Job Postings, 2016Q1-2024Q4 (𝐴𝑃𝑆𝑗 ,2024𝑄1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2016 0.001*** 0.002***
(0.000) (0.001)

Log TFP 2016 0.004*** 0.002*
(0.001) (0.001)

Log Age 2016 -0.001* -0.002*
(0.001) (0.001)

Tobin’s Q 2016 0.002*** 0.001*
(0.000) (0.001)

Log Markup 2016 -0.001 -0.003**
(0.001) (0.001)

R&D/Sales 2016 -0.000 0.000
(0.000) (0.005)

ROA 2016 0.021 0.042*
(0.015) (0.023)

Cash/Assets 2016 0.013*** 0.024***
(0.003) (0.006)

Debt/Assets 2016 0.001 0.001
(0.003) (0.003)

Industry FE Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y
𝑁 7449 6804 7127 7531 7438 7544 7535 7535 7097 6192
adj. 𝑅2 0.015 0.018 0.015 0.016 0.014 0.014 0.014 0.016 0.016 0.029
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C Supplements to Firm Performance in Long-differences

C.1 Firm Performance: Excluding Financial and Utility Firms

Table C1: AI Pricing and Firm Performance: Long-differences, Excluding Finance & Utility

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 3.236*** 3.209*** 2.806*** 2.720*** 3.568*** 3.646*** 0.635** 0.967***
(0.537) (0.501) (0.467) (0.448) (0.550) (0.546) (0.252) (0.162)

Share of AI -0.637 -0.935 -1.034 -1.082***
(0.741) (0.646) (0.807) (0.240)

Share of Pricing 0.140 0.298 0.288 0.285***
(0.337) (0.301) (0.366) (0.109)

Log Sales -0.102*** -0.146*** -0.131*** 0.016***
(0.010) (0.010) (0.011) (0.003)

Log TFP 0.045** 0.170*** 0.113*** -0.078***
(0.022) (0.020) (0.024) (0.007)

R&D/Sales 1.578*** 1.078*** 1.041*** 0.225***
(0.190) (0.175) (0.207) (0.062)

Controls N Y N Y N Y N Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 3074 2986 2760 2696 3080 2987 3074 2986
adj. 𝑅2 0.051 0.125 0.102 0.218 0.063 0.129 0.018 0.063

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2]+Γ𝑍𝑗 ,𝑡1+

𝛾𝑠+𝛿𝑞+𝜖𝑗 , whereΔ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure𝐴𝑃𝑆𝑗 ,𝑡2 and𝐴𝑃𝑆𝑗 ,𝑡1,
in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023. We
omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1 includes a set of controls, including the share of AI jobs, the
share of pricing jobs, size, age, productivity, and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is
the two-digit NAICS industry fixed effect, and 𝛿𝑞 represents the quarter fixed effect.
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C.2 Firm Performance: Excluding Information Technology Firms

Table C2: AI Pricing and Firm Performance: Long-differences, Excluding IT

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 1.142*** 1.071*** 1.001*** 0.876*** 0.935*** 0.999*** 0.176 0.149
(0.333) (0.303) (0.285) (0.267) (0.338) (0.325) (0.166) (0.115)

Share of AI -0.542 -0.790 -0.884 -0.572**
(0.692) (0.607) (0.741) (0.261)

Share of Pricing 0.113 0.327 0.145 0.018
(0.193) (0.251) (0.207) (0.073)

Log Sales -0.103*** -0.116*** -0.133*** 0.005
(0.009) (0.008) (0.010) (0.003)

Log TFP 0.021 0.150*** 0.077*** -0.082***
(0.020) (0.018) (0.021) (0.007)

R&D/Sales 1.790*** 1.422*** 1.192*** 0.340***
(0.186) (0.171) (0.199) (0.070)

Controls N Y N Y N Y N Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 3737 3501 3445 3240 3748 3505 3737 3501
adj. 𝑅2 0.067 0.155 0.089 0.188 0.046 0.124 0.018 0.059

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2]+Γ𝑍𝑗 ,𝑡1+

𝛾𝑠+𝛿𝑞+𝜖𝑗 , whereΔ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure𝐴𝑃𝑆𝑗 ,𝑡2 and𝐴𝑃𝑆𝑗 ,𝑡1,
in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023. We
omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1 includes a set of controls, including the share of AI jobs, the
share of pricing jobs, size, age, productivity, and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is
the two-digit NAICS industry fixed effect, and 𝛿𝑞 represents the quarter fixed effect.
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C.3 Firm Performance: Excluding Professional & Business Services Firms

Table C3: AI Pricing and Firm Performance: Long-differences, Excluding Business Services

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 1.292*** 1.288*** 1.036*** 0.977*** 1.224*** 1.322*** 0.237 0.231*
(0.342) (0.314) (0.296) (0.278) (0.353) (0.341) (0.173) (0.126)

Share of AI -0.604 -0.594 -0.652 -0.839***
(0.734) (0.644) (0.799) (0.294)

Share of Pricing 0.089 0.223 0.079 -0.056
(0.191) (0.239) (0.207) (0.076)

Log Sales -0.104*** -0.122*** -0.138*** 0.008**
(0.009) (0.008) (0.010) (0.004)

Log TFP 0.048** 0.176*** 0.117*** -0.092***
(0.020) (0.018) (0.022) (0.008)

R&D/Sales 1.547*** 1.208*** 0.995*** 0.322***
(0.181) (0.167) (0.197) (0.073)

Controls N Y N Y N Y N Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 3855 3620 3538 3334 3866 3624 3855 3620
adj. 𝑅2 0.066 0.148 0.088 0.189 0.051 0.127 0.018 0.059

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2]+Γ𝑍𝑗 ,𝑡1+

𝛾𝑠+𝛿𝑞+𝜖𝑗 , whereΔ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure𝐴𝑃𝑆𝑗 ,𝑡2 and𝐴𝑃𝑆𝑗 ,𝑡1,
in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023. We
omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1 includes a set of controls, including the share of AI jobs, the
share of pricing jobs, size, age, productivity, and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is
the two-digit NAICS industry fixed effect, and 𝛿𝑞 represents the quarter fixed effect.
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C.4 Firm Performance: Excluding Finance, IT, and PBS

Table C4: AI Pricing and Firm Performance: Long-differences, Excluding Fin, IT, PBS

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 3.810*** 3.962*** 3.238*** 3.356*** 3.773*** 4.012*** 0.414 0.738***
(0.594) (0.547) (0.506) (0.486) (0.591) (0.582) (0.278) (0.157)

Share of AI -1.276 -1.266* -1.333 -1.250***
(0.779) (0.688) (0.829) (0.223)

Share of Pricing 0.378 0.486 0.551 0.575***
(0.371) (0.338) (0.394) (0.106)

Log Sales -0.104*** -0.147*** -0.138*** 0.011***
(0.011) (0.011) (0.012) (0.003)

Log TFP 0.017 0.141*** 0.095*** -0.061***
(0.024) (0.022) (0.025) (0.007)

R&D/Sales 1.804*** 1.318*** 1.241*** 0.241***
(0.202) (0.187) (0.215) (0.058)

Controls N Y N Y N Y N Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 2638 2553 2389 2328 2644 2554 2638 2553
adj. 𝑅2 0.056 0.139 0.113 0.226 0.064 0.139 0.016 0.070

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2]+Γ𝑍𝑗 ,𝑡1+

𝛾𝑠+𝛿𝑞+𝜖𝑗 , whereΔ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure𝐴𝑃𝑆𝑗 ,𝑡2 and𝐴𝑃𝑆𝑗 ,𝑡1,
in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023. We
omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1 includes a set of controls, including the share of AI jobs, the
share of pricing jobs, size, age, productivity, and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is
the two-digit NAICS industry fixed effect, and 𝛿𝑞 represents the quarter fixed effect.

32



C.5 Firm Performance: Excluding Largest Firms by Top 1%, 5%, or 10%

We examine the long-difference regressions while dropping the largest leading firms in sales

by the top 1%, 5%, or 10%. The results show that the largest firms do not solely drive the firm

performance effects of AI pricing, even dropping all firms in the top 10%.

Table C5: AI Pricing and Firm Performance: Long-differences, Drop Top 1%

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 1.247*** 1.128*** 1.075*** 0.890*** 1.200*** 1.192*** 0.266 0.263**
(0.334) (0.307) (0.288) (0.271) (0.346) (0.335) (0.168) (0.122)

Share of AI -0.355 -0.623 -0.698 -0.639**
(0.700) (0.611) (0.764) (0.278)

Share of Pricing 0.070 0.208 0.082 -0.051
(0.191) (0.237) (0.208) (0.076)

Log Sales -0.107*** -0.120*** -0.137*** 0.008**
(0.009) (0.009) (0.010) (0.004)

Log TFP 0.049** 0.175*** 0.108*** -0.092***
(0.020) (0.018) (0.021) (0.008)

R&D/Sales 1.543*** 1.173*** 0.986*** 0.320***
(0.180) (0.166) (0.196) (0.071)

Controls N Y N Y N Y N Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 3936 3703 3602 3400 3947 3707 3936 3703
adj. 𝑅2 0.065 0.143 0.087 0.182 0.048 0.117 0.018 0.058

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2]+Γ𝑍𝑗 ,𝑡1+

𝛾𝑠+𝛿𝑞+𝜖𝑗 , whereΔ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure𝐴𝑃𝑆𝑗 ,𝑡2 and𝐴𝑃𝑆𝑗 ,𝑡1,
in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023. We
omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1 includes a set of controls, including the share of AI jobs, the
share of pricing jobs, size, age, productivity, and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is
the two-digit NAICS industry fixed effect, and 𝛿𝑞 represents the quarter fixed effect.
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Table C6: AI Pricing and Firm Performance: Long-differences, Drop Top 5%

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 1.105*** 0.915*** 0.841*** 0.600** 1.077*** 0.989*** 0.240 0.206
(0.341) (0.314) (0.290) (0.273) (0.353) (0.343) (0.175) (0.126)

Share of AI -0.470 -0.748 -0.801 -0.622**
(0.707) (0.610) (0.775) (0.283)

Share of Pricing 0.023 0.146 0.040 -0.057
(0.193) (0.239) (0.211) (0.077)

Log Sales -0.104*** -0.117*** -0.128*** 0.006
(0.011) (0.010) (0.012) (0.004)

Log TFP 0.043** 0.171*** 0.096*** -0.094***
(0.020) (0.018) (0.022) (0.008)

R&D/Sales 1.578*** 1.218*** 1.053*** 0.338***
(0.184) (0.168) (0.202) (0.074)

Controls N Y N Y N Y N Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 3675 3455 3354 3157 3686 3459 3675 3455
adj. 𝑅2 0.069 0.139 0.088 0.175 0.054 0.110 0.021 0.061

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2]+Γ𝑍𝑗 ,𝑡1+

𝛾𝑠+𝛿𝑞+𝜖𝑗 , whereΔ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure𝐴𝑃𝑆𝑗 ,𝑡2 and𝐴𝑃𝑆𝑗 ,𝑡1,
in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023. We
omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1 includes a set of controls, including the share of AI jobs, the
share of pricing jobs, size, age, productivity, and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is
the two-digit NAICS industry fixed effect, and 𝛿𝑞 represents the quarter fixed effect.
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Table C7: AI Pricing and Firm Performance: Long-differences, Drop Top 10%

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 1.184*** 0.967*** 0.973*** 0.699** 1.310*** 1.192*** 0.351* 0.312**
(0.361) (0.334) (0.301) (0.284) (0.372) (0.364) (0.185) (0.130)

Share of AI -0.420 -0.689 -0.768 -0.643**
(0.729) (0.614) (0.796) (0.284)

Share of Pricing 0.042 0.171 0.067 -0.063
(0.201) (0.246) (0.219) (0.078)

Log Sales -0.085*** -0.095*** -0.113*** 0.009*
(0.013) (0.011) (0.014) (0.005)

Log TFP 0.040* 0.183*** 0.104*** -0.093***
(0.022) (0.019) (0.024) (0.008)

R&D/Sales 1.622*** 1.291*** 1.106*** 0.359***
(0.192) (0.172) (0.210) (0.075)

Controls N Y N Y N Y N Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 3345 3142 3032 2852 3356 3146 3345 3142
adj. 𝑅2 0.057 0.114 0.066 0.143 0.042 0.087 0.023 0.061

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2]+Γ𝑍𝑗 ,𝑡1+

𝛾𝑠+𝛿𝑞+𝜖𝑗 , whereΔ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing share measure𝐴𝑃𝑆𝑗 ,𝑡2 and𝐴𝑃𝑆𝑗 ,𝑡1,
in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corresponding four quarters in 2023. We
omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1 includes a set of controls, including the share of AI jobs, the
share of pricing jobs, size, age, productivity, and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is
the two-digit NAICS industry fixed effect, and 𝛿𝑞 represents the quarter fixed effect.
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C.6 Firm Performance: Controlling for Changes in Other Shares

Table C8: AI Pricing and Firm Performance: Long-differences, Controlling Other Changes

Δ Log Δ Log Δ Log Δ Log Δ Log Δ Log Δ Log Δ Log
Sales Employment Assets Markup Sales Employment Assets Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 1.106*** 0.848*** 1.161*** 0.247** 1.138*** 0.877*** 1.198*** 0.259**
(0.304) (0.268) (0.332) (0.120) (0.305) (0.268) (0.332) (0.121)

Δ𝐴𝐼𝑆𝑗 ,[2010,2023] 2.696*** 2.497*** 3.118*** 1.059***
(0.732) (0.644) (0.798) (0.290)

Δ𝑃𝑆𝑗 ,[2010,2023] -0.402 -0.527 -0.671 -0.190
(0.651) (0.599) (0.709) (0.258)

Share of AI -1.403* -1.587** -1.897** -1.034*** -0.380 -0.648 -0.717 -0.632**
(0.751) (0.655) (0.818) (0.297) (0.698) (0.609) (0.761) (0.276)

Share of Pricing 0.070 0.240 0.082 -0.049 0.098 0.311 0.130 -0.036
(0.190) (0.236) (0.206) (0.075) (0.196) (0.253) (0.213) (0.078)

Log Sales -0.106*** -0.123*** -0.136*** 0.008** -0.103*** -0.121*** -0.133*** 0.009***
(0.009) (0.008) (0.010) (0.003) (0.009) (0.008) (0.010) (0.003)

Log TFP 0.035* 0.164*** 0.093*** -0.097*** 0.047** 0.176*** 0.107*** -0.092***
(0.020) (0.018) (0.021) (0.008) (0.019) (0.018) (0.021) (0.008)

R&D/Sales 1.446*** 1.092*** 0.871*** 0.274*** 1.560*** 1.200*** 1.004*** 0.319***
(0.181) (0.167) (0.197) (0.072) (0.179) (0.165) (0.195) (0.071)

Controls Y Y Y Y Y Y Y Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 3583 3293 3587 3583 3583 3293 3587 3583
adj. 𝑅2 0.186 0.230 0.202 0.056 0.183 0.228 0.200 0.054

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] +

𝛾{Δ𝐴𝐼𝑆𝑗 ,[𝑡1,𝑡2], Δ𝑃𝑆𝑗 ,[𝑡1,𝑡2]} + Γ𝑍𝑗 ,𝑡1 + 𝛾𝑠 + 𝜖𝑗 , where Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing
share measure 𝐴𝑃𝑆𝑗 ,𝑡2 and 𝐴𝑃𝑆𝑗 ,𝑡1, in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corre-
sponding four quarters in 2023. And {Δ𝐴𝐼𝑆𝑗 ,[𝑡1,𝑡2], Δ𝑃𝑆𝑗 ,[𝑡1,𝑡2]} measures the changes in AI share and Pricing
share in the same fashion. Both the changes in AI share and Pricing share are orthogonal to Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2], so
AI pricing jobs are not picked up in either of the measures. We omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1

includes a set of controls, including the share of AI jobs, the share of pricing jobs, size, age, productivity,
and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is the two-digit NAICS industry fixed effect, and 𝛿𝑞

represents the quarter fixed effect.
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Table C9: AI Pricing and Firm Performance: Long-differences, Controlling Both Changes

Δ Log Sales Δ Log Employment Δ Log Assets Δ Log Markup

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝐴𝑃𝑆𝑗 ,[2010,2023] 1.070*** 1.107*** 0.860*** 0.850*** 1.017*** 1.163*** 0.245 0.247**
(0.332) (0.304) (0.286) (0.268) (0.344) (0.332) (0.167) (0.120)

Δ𝐴𝐼𝑆𝑗 ,[2010,2023] 3.099*** 2.697*** 3.333*** 2.499*** 3.044*** 3.121*** 0.416 1.060***
(0.721) (0.732) (0.620) (0.644) (0.745) (0.798) (0.362) (0.290)

Δ𝑃𝑆𝑗 ,[2010,2023] -1.058 -0.409 -0.589 -0.534 -1.497** -0.679 -0.534 -0.192
(0.670) (0.650) (0.581) (0.598) (0.692) (0.708) (0.336) (0.257)

Share of AI -1.413* -1.599** -1.913** -1.038***
(0.751) (0.655) (0.818) (0.297)

Share of Pricing 0.101 0.322 0.133 -0.035
(0.196) (0.253) (0.213) (0.077)

Log Sales -0.106*** -0.123*** -0.136*** 0.008**
(0.009) (0.008) (0.010) (0.003)

Log TFP 0.036* 0.165*** 0.094*** -0.096***
(0.020) (0.018) (0.021) (0.008)

R&D/Sales 1.447*** 1.090*** 0.873*** 0.274***
(0.181) (0.167) (0.197) (0.072)

Controls N Y N Y N Y N Y
Industry FE Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
𝑁 4014 3777 3677 3471 4025 3781 4014 3777
adj. 𝑅2 0.068 0.148 0.093 0.191 0.054 0.125 0.019 0.062

Notes: Standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01. Industry fixed effects are con-
trolled at the two-digit NAICS level. We run the following regression: Δ𝑦𝑗 ,[𝑡1,𝑡2] = 𝛽Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] +

𝛾{Δ𝐴𝐼𝑆𝑗 ,[𝑡1,𝑡2], Δ𝑃𝑆𝑗 ,[𝑡1,𝑡2]} + Γ𝑍𝑗 ,𝑡1 + 𝛾𝑠 + 𝜖𝑗 , where Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2] is the difference between the AI pricing
share measure 𝐴𝑃𝑆𝑗 ,𝑡2 and 𝐴𝑃𝑆𝑗 ,𝑡1, in which 𝑡1 includes four quarters in 2010 and 𝑡2 includes the corre-
sponding four quarters in 2023. And {Δ𝐴𝐼𝑆𝑗 ,[𝑡1,𝑡2], Δ𝑃𝑆𝑗 ,[𝑡1,𝑡2]} measures the changes in AI share and Pricing
share in the same fashion. Both the changes in AI share and Pricing share are orthogonal to Δ𝐴𝑃𝑆𝑗 ,[𝑡1,𝑡2], so
AI pricing jobs are not picked up in either of the measures. We omit 2024Q1 for potential seasonality. 𝑍𝑗 ,𝑡1

includes a set of controls, including the share of AI jobs, the share of pricing jobs, size, age, productivity,
and other balance sheet characteristics in 𝑡1. Finally, 𝛾𝑠 is the two-digit NAICS industry fixed effect, and 𝛿𝑞

represents the quarter fixed effect.
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D Supplements to Monetary Shock Analysis

D.1 Monetary Shocks: Using the Firm-level Adoption Dummy

In the main text, we measure firm-level AI pricing adoptions by the cumulative share of AI pricing

jobs in all pricing jobs, which is a measure of AI pricing intensity. Here, we consider an alternative

regression where we measure AI pricing adoptions using the adoption dummy (1𝐴𝑃
𝑗,𝑡−1), which is

the cumulative incidence of AI pricing job postings until quarter 𝑡 − 1 for firm 𝑗 , that is if firm 𝑗

has ever posted one AI pricing job from the beginning of our sample until quarter 𝑡 −1, 1𝐴𝑃
𝑗,𝑡−1 = 1.

In particular, we estimate the following empirical specification

𝑅𝑗 ,𝑒 =𝛽0 + 𝛽1𝑀𝑃𝑒 × 1
𝐴𝑃
𝑗,𝑡−1 = 𝟎 + 𝛽2𝑀𝑃𝑒 × 1

𝐴𝑃
𝑗,𝑡−1 = 𝟏

+ 𝛽3𝑍𝑗 ,𝑡−1 + 𝛽4𝐹𝑃𝐴𝑠 + 𝛽5𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 + 𝛾𝑗 + 𝜖𝑗𝑒.
(D.1)

Table D1 presents the result of our regression specification (4) using the lagged AI-pricing

dummy as an indicator of AI pricing adoption, where 𝑍𝑗 ,𝑡−1 includes the industry-level frequency

of price adjustment 𝐹𝑃𝐴𝑠. Different columns vary in specifications by turning firm-level controls

and firm fixed effects on and off. We do not include event fixed effects here, so we can see the

average effects of monetary policy surprises. First, all columns show that monetary expansions

cause positive stock returns at the firm level. The point estimate is economically large and statis-

tically significant at the 1% level: a hypothetical policy surprise of 25 bps leads to an increase in a

return of about 2.5 to 3.0 percentage points for firms that non-adopters of AI pricing (1𝐴𝑃
𝑗,𝑡−1 = 𝟎).

Second, for firms that have ever adopted AI pricing up to period 𝑡 − 1 (1𝐴𝑃
𝑗,𝑡−1 = 𝟏), the effects of

the same policy surprise increase to about 2.7 to 3.2 percentage points. The gap between the two

is about 0.3 percentage points and is quite robust and significant across different specifications.

Third, the gap between the two is quantitatively comparable to the marginal effects of a higher

frequency of price adjustment, with the magnitude of one standard deviation.
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Table D1: Stock Return Response to Monetary Shocks: AI Pricing Dummy

(1) (2) (3) (4) (5) (6)
𝑀𝑃𝑒 × 1

𝐴𝑃
𝑗,𝑡−1 = 𝟎 2.478*** 2.487*** 2.415*** 2.933*** 2.950*** 2.910***

(0.080) (0.080) (0.081) (0.192) (0.173) (0.175)
𝑀𝑃𝑒 × 1

𝐴𝑃
𝑗,𝑡−1 = 𝟏 2.725*** 3.021*** 3.000*** 2.953*** 3.114*** 3.182***

(0.092) (0.106) (0.109) (0.207) (0.240) (0.245)
1
𝐴𝑃
𝑗,𝑡−1 = 𝟏 0.023 -0.003 -0.074*** 0.024 0.008 -0.046

(0.014) (0.017) (0.026) (0.033) (0.037) (0.060)
𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 0.380*** 0.385*** 0.370***

(0.140) (0.129) (0.129)
𝐹𝑃𝐴𝑠 0.033** 0.018

(0.016) (0.016)
Controls N Y Y N Y Y
Firm FE N N Y N N Y
𝑁 180236 145094 145094 48196 35890 35890
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (4),
where 1𝐴𝑃

𝑗,𝑡−1 is a dummy indicator of the cumulative incidence of firm-level AI pricing
adoption, lagged by one quarter. The key independent variable is the interaction be-
tween the AI pricing dummy and the monetary policy shock. The regression includes
controls for the frequency of price adjustment (𝐹𝑃𝐴𝑠) at the NAICS 6-digit industry level
and its interactions with the monetary policy shocks. In addition, the regression includes
the same set of firm-level controls as in the long-difference regressions, including (1) the
lagged firm-level markup, the lagged firm-level share of AI workers, and the lagged share
of pricing workers, and (2) the lagged firm-level characteristics. The regression also in-
cludes firm and event fixed effects.
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D.2 Monetary Shocks: Additional Main Specification Results

D.2.1 Interactions with Firm-level Controls

Table D2: Stock Return Response to Monetary Shocks: Interaction with Controls

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
𝑀𝑃𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 6.739** 7.172*** 6.458** 6.403** 6.705*** 6.538** 6.455** 6.723*** 6.487** 7.049***

(2.702) (2.694) (2.598) (2.597) (2.597) (2.597) (2.596) (2.602) (2.596) (2.714)
𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 0.397*** 0.384*** 0.387*** 0.379*** 0.351*** 0.362*** 0.360*** 0.357*** 0.344*** 0.332**

(0.119) (0.119) (0.124) (0.118) (0.119) (0.120) (0.120) (0.120) (0.122) (0.130)
𝑀𝑃𝑒 × Share of AI 11.144** 13.078***

(4.971) (5.073)
𝑀𝑃𝑒 × Share of Pricing -1.918 -1.819

(2.130) (2.137)
𝑀𝑃𝑒 × Log Sales -0.006 0.045

(0.084) (0.108)
𝑀𝑃𝑒 × Log Age -0.167 -0.243

(0.173) (0.188)
𝑀𝑃𝑒 × Log TFP -0.415*** -0.579**

(0.155) (0.237)
𝑀𝑃𝑒 × R&D/Sales -1.166 -0.937

(0.908) (1.254)
𝑀𝑃𝑒 × Log Tobin’s Q -0.345 -0.092

(0.255) (0.319)
𝑀𝑃𝑒 × Cash/Asset -1.192 -0.456

(0.776) (1.121)
𝑀𝑃𝑒 × Log Markup -0.338 0.371

(0.239) (0.375)
Controls Y Y Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y Y Y
Event FE Y Y Y Y Y Y Y Y Y Y
𝑁 23774 23774 24556 24556 24556 24556 24556 24556 24556 23774
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (4), where the key
independent variable 𝐴𝑃𝑆𝑗 ,𝑡−1 is the firm-level share of AI pricing jobs in all pricing jobs, lagged by one
quarter. The regression includes controls for the frequency of price adjustment (𝐹𝑃𝐴𝑠) at the NAICS 6-digit
industry level and its interactions with the monetary policy shocks. In addition, the regression includes
the same set of firm-level controls as in the long-difference regressions, including (1) the lagged firm-level
markup, the lagged firm-level share of AI workers, and the lagged share of pricing workers, and (2) the
lagged firm-level characteristics. The regression also includes firm and event fixed effects.
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D.2.2 Excluding Finance, IT, and Business Services

Table D3: Stock Return Response to Monetary Shocks: Interaction with Controls

Excluding Finance, IT, and Business Services
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

𝑀𝑃𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 6.759** 7.186*** 6.475** 6.415** 6.725*** 6.554** 6.468** 6.740*** 6.505** 7.065***
(2.700) (2.693) (2.596) (2.595) (2.596) (2.595) (2.595) (2.600) (2.595) (2.712)

𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 0.394*** 0.381*** 0.383*** 0.376*** 0.348*** 0.357*** 0.356*** 0.353*** 0.340*** 0.325**
(0.119) (0.119) (0.124) (0.119) (0.119) (0.120) (0.120) (0.120) (0.122) (0.130)

𝑀𝑃𝑒 × Share of AI 11.033** 12.969**
(4.969) (5.071)

𝑀𝑃𝑒 × Share of Pricing -1.906 -1.805
(2.129) (2.136)

𝑀𝑃𝑒 × Log Sales -0.004 0.046
(0.084) (0.108)

𝑀𝑃𝑒 × Log Age -0.180 -0.265
(0.174) (0.190)

𝑀𝑃𝑒 × Log TFP -0.411*** -0.568**
(0.155) (0.238)

𝑀𝑃𝑒 × R&D/Sales -1.203 -0.979
(0.910) (1.254)

𝑀𝑃𝑒 × Log Tobin’s Q -0.350 -0.094
(0.256) (0.320)

𝑀𝑃𝑒 × Cash/Asset -1.209 -0.457
(0.779) (1.122)

𝑀𝑃𝑒 × Log Markup -0.344 0.355
(0.239) (0.375)

Controls Y Y Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y Y Y
Event FE Y Y Y Y Y Y Y Y Y Y
𝑁 23588 23588 24362 24362 24362 24362 24362 24362 24362 23588
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (4), where the key
independent variable 𝐴𝑃𝑆𝑗 ,𝑡−1 is the firm-level share of AI pricing jobs in all pricing jobs, lagged by one
quarter. The regression includes controls for the frequency of price adjustment (𝐹𝑃𝐴𝑠) at the NAICS 6-digit
industry level and its interactions with the monetary policy shocks. In addition, the regression includes
the same set of firm-level controls as in the long-difference regressions, including (1) the lagged firm-level
markup, the lagged firm-level share of AI workers, and the lagged share of pricing workers, and (2) the
lagged firm-level characteristics. The regression also includes firm and event fixed effects.
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D.3 Monetary Shocks: Additional Results of Asymmetric Effects

Table D4: Stock Return Response to Monetary Shocks: AI Pricing Dummy

Allowing for Asymmetric Effects of Monetary Shocks (𝑀𝑃+
𝑒 Stands for Easing)

(1) (2) (3) (4) (5) (6)
𝑀𝑃+

𝑒 × 1𝐴𝑃
𝑗,𝑡−1 = 𝟎 3.430*** 3.350*** 3.365*** 3.429*** 3.423*** 3.414***

(0.172) (0.170) (0.171) (0.412) (0.372) (0.373)
𝑀𝑃+

𝑒 × 1𝐴𝑃
𝑗,𝑡−1 = 𝟏 3.580*** 3.123*** 3.041*** 3.163*** 2.541*** 2.345***

(0.210) (0.234) (0.237) (0.470) (0.528) (0.536)
𝑀𝑃−

𝑒 × 1𝐴𝑃
𝑗,𝑡−1 = 𝟎 -1.836*** -1.905*** -1.762*** -2.598*** -2.631*** -2.567***

(0.130) (0.129) (0.131) (0.308) (0.279) (0.284)
𝑀𝑃−

𝑒 × 1𝐴𝑃
𝑗,𝑡−1 = 𝟏 -2.230*** -2.958*** -2.968*** -2.826*** -3.460*** -3.701***

(0.143) (0.167) (0.173) (0.322) (0.375) (0.388)
𝑀𝑃+

𝑒 × 𝐹𝑃𝐴𝑠 0.531* 0.407 0.424
(0.299) (0.275) (0.275)

𝑀𝑃−
𝑒 × 𝐹𝑃𝐴𝑠 -0.271 -0.362* -0.327

(0.221) (0.203) (0.204)
Controls N Y Y N Y Y
Firm FE N N Y N N Y
𝑁 180236 145094 145094 48196 35890 35890
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (6),
where the key independent variable 𝐴𝑃𝑆𝑗 ,𝑡−1 is the firm-level share of AI pricing jobs in all
pricing jobs, lagged by one quarter. The regression includes controls for the frequency of price
adjustment (𝐹𝑃𝐴𝑠) at the NAICS 6-digit industry level and its interactions with the monetary
policy shocks. In addition, the regression includes the same set of firm-level controls as in the
long-difference regressions, including (1) the lagged firm-level markup, the lagged firm-level
share of AI workers, and the lagged share of pricing workers and (2) the lagged firm-level
characteristics. The regression also includes firm and event fixed effects.
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Table D5: Stock Return Response to Monetary Shocks: Interaction with Controls

Allowing for Asymmetric Effects of Monetary Shocks (𝑀𝑃+
𝑒 Stands for Easing)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
𝑀𝑃+

𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 0.222 -0.702 -1.117 -0.976 -0.561 -1.309 -0.510 -1.075 1.466
(5.636) (5.599) (5.571) (5.570) (5.569) (5.568) (5.580) (5.566) (5.681)

𝑀𝑃−
𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 -11.466*** -12.466*** -11.089*** -10.958*** -11.131*** -11.106*** -11.144*** -11.068*** -11.385***

(4.285) (4.223) (3.980) (3.978) (3.980) (3.978) (3.987) (3.978) (4.299)
𝑀𝑃+

𝑒 × 𝐹𝑃𝐴𝑠 0.461* 0.455* 0.468* 0.461* 0.361 0.393 0.397 0.324 0.349
(0.251) (0.251) (0.261) (0.250) (0.252) (0.252) (0.252) (0.257) (0.274)

𝑀𝑃−
𝑒 × 𝐹𝑃𝐴𝑠 -0.345* -0.331* -0.324 -0.318* -0.331* -0.331* -0.322* -0.347* -0.304

(0.190) (0.190) (0.198) (0.189) (0.190) (0.192) (0.191) (0.194) (0.208)
𝑀𝑃+

𝑒 × Share of AI 15.505 19.534
(12.257) (12.521)

𝑀𝑃−
𝑒 × Share of AI -6.586 -7.054

(8.194) (8.377)
𝑀𝑃+

𝑒 × Share of Pricing 10.976** 11.241**
(5.309) (5.318)

𝑀𝑃−
𝑒 × Share of Pricing 8.272*** 8.256**

(3.200) (3.212)
𝑀𝑃+

𝑒 × Log Sales -0.036 0.014
(0.181) (0.230)

𝑀𝑃−
𝑒 × Log Sales -0.014 -0.077

(0.134) (0.174)
𝑀𝑃+

𝑒 × Log Age 0.216 0.192
(0.361) (0.389)

𝑀𝑃−
𝑒 × Log Age 0.441 0.554*

(0.283) (0.307)
𝑀𝑃+

𝑒 × Log TFP -0.855*** -0.789
(0.325) (0.493)

𝑀𝑃−
𝑒 × Log TFP 0.106 0.343

(0.253) (0.386)
𝑀𝑃+

𝑒 × Log Tobin’s Q -0.970* -0.150
(0.556) (0.691)

𝑀𝑃−
𝑒 × Log Tobin’s Q -0.041 0.094

(0.408) (0.511)
𝑀𝑃+

𝑒 × Cash/Asset -2.425 -0.718
(1.678) (2.186)

𝑀𝑃−
𝑒 × Cash/Asset 0.396 0.876

(1.232) (1.655)
𝑀𝑃+

𝑒 × Log Markup -1.092** -0.147
(0.524) (0.780)

𝑀𝑃−
𝑒 × Log Markup -0.136 -0.509

(0.381) (0.567)
Controls Y Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y Y
Event FE Y Y Y Y Y Y Y Y Y
𝑁 23774 23774 24556 24556 24556 24556 24556 24556 23774
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.
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D.4 Monetary Shocks: Raw Shocks in Bauer and Swanson (2023)

Table D6: Stock Return Response to Raw Monetary Shocks: AI Pricing Dummy

(1) (2) (3) (4) (5) (6)
𝑀𝑃𝑒 × 1

𝐴𝑃
𝑗,𝑡−1 = 𝟎 2.426*** 2.408*** 2.458*** 2.868*** 2.915*** 2.972***

(0.083) (0.082) (0.082) (0.196) (0.179) (0.179)
𝑀𝑃𝑒 × 1

𝐴𝑃
𝑗,𝑡−1 = 𝟏 3.033*** 3.054*** 3.172*** 3.408*** 3.240*** 3.395***

(0.098) (0.112) (0.114) (0.218) (0.253) (0.257)
1
𝐴𝑃
𝑗,𝑡−1 = 𝟏 0.037*** 0.020 -0.055** 0.031 0.025 -0.039

(0.014) (0.017) (0.026) (0.033) (0.038) (0.060)
𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 0.455*** 0.471*** 0.472***

(0.146) (0.133) (0.133)
𝐹𝑃𝐴𝑠 0.036** 0.017

(0.016) (0.016)
Controls N Y Y N Y Y
Firm FE N N Y N N Y
𝑁 180236 145094 145094 48196 35890 35890
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (4), where
1
𝐴𝑃
𝑗,𝑡−1 is a dummy indicator of the cumulative incidence of firm-level AI pricing adoption, lagged by

one quarter. The key independent variable is the interaction between the AI pricing dummy and
the monetary policy shock. The regression includes controls for the frequency of price adjustment
(𝐹𝑃𝐴𝑠) at the NAICS 6-digit industry level and its interactions with the monetary policy shocks.
In addition, the regression includes the same set of firm-level controls as in the long-difference
regressions, including (1) the lagged firm-level markup, the lagged firm-level share of AI workers,
and the lagged share of pricing workers, and (2) the lagged firm-level characteristics. The regres-
sion also includes firm and event fixed effects.
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Table D7: Stock Return Response to Raw Monetary Shocks: Interaction with Controls

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
𝑀𝑃𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 6.150** 6.787** 6.744** 6.767** 7.243*** 6.920** 6.825** 7.085** 6.874** 6.383**

(2.843) (2.825) (2.772) (2.771) (2.771) (2.771) (2.770) (2.776) (2.770) (2.854)
𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 0.454*** 0.440*** 0.489*** 0.439*** 0.392*** 0.418*** 0.411*** 0.419*** 0.384*** 0.404***

(0.121) (0.121) (0.127) (0.121) (0.121) (0.122) (0.122) (0.122) (0.124) (0.132)
𝑀𝑃𝑒 × Share of AI 10.068** 12.610***

(4.747) (4.851)
𝑀𝑃𝑒 × Share of Pricing -2.385 -2.293

(2.222) (2.230)
𝑀𝑃𝑒 × Log Sales -0.101 -0.021

(0.085) (0.110)
𝑀𝑃𝑒 × Log Age -0.206 -0.225

(0.174) (0.189)
𝑀𝑃𝑒 × Log TFP -0.646*** -0.750***

(0.158) (0.240)
𝑀𝑃𝑒 × R&D/Sales -1.265 -1.415

(0.890) (1.230)
𝑀𝑃𝑒 × Log Tobin’s Q -0.443* -0.107

(0.257) (0.322)
𝑀𝑃𝑒 × Cash/Asset -1.076 -0.232

(0.785) (1.143)
𝑀𝑃𝑒 × Log Markup -0.500** 0.416

(0.240) (0.374)
Controls Y Y Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y Y Y
Event FE Y Y Y Y Y Y Y Y Y Y
𝑁 23774 23774 24556 24556 24556 24556 24556 24556 24556 23774
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (4), where the key
independent variable 𝐴𝑃𝑆𝑗 ,𝑡−1 is the firm-level share of AI pricing jobs in all pricing jobs, lagged by one
quarter. The regression includes controls for the frequency of price adjustment (𝐹𝑃𝐴𝑠) at the NAICS 6-digit
industry level and its interactions with the monetary policy shocks. In addition, the regression includes
the same set of firm-level controls as in the long-difference regressions, including (1) the lagged firm-level
markup, the lagged firm-level share of AI workers, and the lagged share of pricing workers, and (2) the
lagged firm-level characteristics. The regression also includes firm and event fixed effects.
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Table D8: Stock Return Response to Raw Monetary Shocks: Interaction with Controls

Excluding Finance, IT, and Business Services
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

𝑀𝑃𝑒 × 𝐴𝑃𝑆𝑗 ,𝑡−1 6.180** 6.805** 6.768** 6.783** 7.285*** 6.945** 6.848** 7.107** 6.903** 6.423**
(2.842) (2.823) (2.771) (2.770) (2.770) (2.770) (2.769) (2.775) (2.769) (2.853)

𝑀𝑃𝑒 × 𝐹𝑃𝐴𝑠 0.450*** 0.436*** 0.486*** 0.435*** 0.389*** 0.414*** 0.407*** 0.415*** 0.381*** 0.394***
(0.121) (0.121) (0.127) (0.121) (0.122) (0.122) (0.123) (0.122) (0.124) (0.132)

𝑀𝑃𝑒 × Share of AI 9.921** 12.485**
(4.745) (4.851)

𝑀𝑃𝑒 × Share of Pricing -2.372 -2.276
(2.221) (2.230)

𝑀𝑃𝑒 × Log Sales -0.101 -0.017
(0.085) (0.111)

𝑀𝑃𝑒 × Log Age -0.239 -0.269
(0.176) (0.191)

𝑀𝑃𝑒 × Log TFP -0.646*** -0.748***
(0.158) (0.241)

𝑀𝑃𝑒 × R&D/Sales -1.292 -1.481
(0.891) (1.230)

𝑀𝑃𝑒 × Log Tobin’s Q -0.447* -0.107
(0.259) (0.323)

𝑀𝑃𝑒 × Cash/Asset -1.078 -0.236
(0.787) (1.144)

𝑀𝑃𝑒 × Log Markup -0.503** 0.412
(0.240) (0.374)

Controls Y Y Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y Y Y
Event FE Y Y Y Y Y Y Y Y Y Y
𝑁 23588 23588 24362 24362 24362 24362 24362 24362 24362 23588
Robust standard errors are in parentheses. * 𝑝<.1, ** 𝑝<0.05, *** 𝑝<0.01.

Notes: This table shows the estimation results under the empirical specification in Eq. (4), where the key
independent variable 𝐴𝑃𝑆𝑗 ,𝑡−1 is the firm-level share of AI pricing jobs in all pricing jobs, lagged by one
quarter. The regression includes controls for the frequency of price adjustment (𝐹𝑃𝐴𝑠) at the NAICS 6-digit
industry level and its interactions with the monetary policy shocks. In addition, the regression includes
the same set of firm-level controls as in the long-difference regressions, including (1) the lagged firm-level
markup, the lagged firm-level share of AI workers, and the lagged share of pricing workers, and (2) the
lagged firm-level characteristics. The regression also includes firm and event fixed effects.
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E Supplements to the Model

E.1 Stylized Model: Additional Proofs

E.1.1 Proof of Lemma 1

Proof. The conditional maximization problem (8) implies the first order condition for each 𝑗 :

𝑝𝑗 − 𝜅 =
𝔼 [𝑑𝑗(𝑝𝑗)|Ω]

𝔼 [𝑑
′
𝑗 (𝑝𝑗)|Ω]

which in terms of the linear demand function (7) is

𝑝𝑗 − 𝜅 =
𝔼 [𝑧𝑗 |Ω] − 𝜂𝑝𝑗

𝜂

Inverting to find 𝑝𝑗 gives the solution.

E.1.2 Proof of Lemma 2

Proof. The linear demand function (7) implies that for each individual 𝑗 , the expected profit is

𝔼 [𝜋𝑗(𝑝𝑗)] = 𝔼 [(𝑝𝑗 − 𝜅)(𝑧𝑗 − 𝜂𝑝𝑗)]

and Lemma 1 implies

𝔼 [𝜋𝑗(𝑝𝑗)] = 𝔼
[(

𝔼 [𝑧𝑗 |Ω]

2𝜂
−
𝜅

2)(
𝑧𝑗 −

𝔼 [𝑧𝑗 |Ω]

2
−
𝜂𝜅

2 )]

=
1

4𝜂
𝔼 [(𝔼 [𝑧𝑗 |Ω] − 𝜂𝜅) (𝑧𝑗 − 𝔼 [𝑧𝑗 |Ω] + 𝑧𝑗 − 𝜂𝜅)] =

1

4𝜂
𝔼 [(𝔼 [𝑧𝑗 |Ω] − 𝜂𝜅) (𝑧𝑗 − 𝜂𝜅)]

because the forecast error 𝑧𝑗 −𝔼 [𝑧𝑗 |Ω] must be statistically independent of 𝔼 [𝑧𝑗 |Ω] − 𝜂𝜅. Then,

take conditional expectations

=
1

4𝜂
𝔼 [(𝔼 [𝑧𝑗 |Ω] − 𝜂𝜅) (𝔼 [𝑧𝑗 |Ω] − 𝜂𝜅)] =

1

4𝜂
𝔼 [(𝔼 [𝑧𝑗 |Ω] − 𝑧 + 𝑧 − 𝜂𝜅) (𝔼 [𝑧𝑗 |Ω] − 𝑧 + 𝑧 − 𝜂𝜅)]
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which introduces the unconditional expectation is 𝑧 = 𝔼 [𝑧𝑗]. As before, the forecast update

𝔼 [𝑧𝑗 |Ω] − 𝑧 must be statistically independent of 𝑧 − 𝜂𝜅:

=
1

4𝜂
𝔼
[(
𝔼 [𝑧𝑗 |Ω] − 𝑧)

2
(𝑧 − 𝜂𝜅)

2

]
=

(𝑧 − 𝜂𝜅)
2

4𝜂
𝕍 [𝔼 [𝑧𝑗 |Ω]]

There is a measure 𝜇 of individuals, so integrating over individuals gives

𝔼
[∫𝑗∈

𝜋𝑗(𝑝𝑗)𝑑𝑗
]
= ∫

𝑗∈

(𝑧 − 𝜂𝜅)
2

4𝜂
𝕍 [𝔼 [𝑧𝑗 |Ω]] 𝑑𝑗 = 𝜇

(𝑧 − 𝜂𝜅)
2

4𝜂
𝕍 [𝔼 [𝑧𝑗 |Ω]]

and substituting with the 𝑗-invariant notation 𝜈𝑅(𝑁) = 𝕍 [𝔼 [𝑧𝑗 |Ω]] proves the proposition.

E.1.3 Proof of Lemma 3

Proof. If firms prefer to adopt AI pricing (condition (17)), all of its first order conditions hold.

First we find the implied AI pricing inputs. 𝑅′(𝑁 ) =
𝜌

𝜈
, so the first order condition (11)

becomes

𝑤 = 𝜇Φ𝜌𝛽𝐿
𝛽−1

𝑏

⟹ 𝐿𝑏 =
(

𝜇Φ𝜌𝛽

𝑤 )

1
1−𝛽

(E.2)

where Φ =
(𝑧−𝜂𝜅)

2

4𝜂
. Equation (15) becomes

𝑤

𝑞
=

𝐹𝑎(𝐿𝑎, 𝐿𝑏 , 𝐶)

𝐹𝑐(𝐿𝑎, 𝐿𝑏 , 𝐶)
=

𝛼𝐴𝛼𝐿𝛼−1𝑎 𝐶𝛾

𝛾𝐴𝛼𝐿𝛼𝑎𝐶
𝛾−1

⟹
𝐶

𝐿𝑎
=

𝑤

𝑞

𝛾

𝛼
(E.3)

and equation (14) becomes

𝐹𝑎(𝐿𝑎, 𝐿𝑏 , 𝐶) = 𝐹𝑏(𝐿𝑎, 𝐿𝑏 , 𝐶)

𝛼𝐴
𝛼
𝐿
𝛼−1
𝑎 𝐶

𝛾
= 𝛽𝐿

𝛽−1

𝑏
(E.4)

Plugging in equations (E.2) and (E.3) gives

𝛼𝐴
𝛼
(
𝑤

𝑞

𝛾

𝛼
)
𝛾
𝐿
𝛼+𝛾−1
𝑎 =

𝑤

𝜇Φ𝜌

⟹ 𝐿𝑎 =
(
𝛼
1−𝛾

𝑤
𝛾−1

𝐴
𝛼
(
𝛾

𝑞
)
𝛾
𝜇Φ𝜌

)

1
1−(𝛼+𝛾)

(E.5)

48



Equation (E.3) says computing is given by 𝐶 =
𝛾𝑤

𝛼𝑞
𝐿𝑎, so the condition in equation (17) be-

comes:

𝜇Φ𝜌𝐴
𝛼
(
𝛾

𝛼

𝑤

𝑞
)
𝛾
𝐿
𝛼+𝛾
𝑎 ≥ (1 +

𝛾

𝛼
)𝑤𝐿𝑎 + 𝜒

Equation (E.16) gives the solution for 𝐿𝑎. Plug it into the condition in equation (17):

𝜇Φ𝜌𝐴
𝛼
(
𝛾

𝛼

𝑤

𝑞
)
𝛾

(
𝜇Φ𝜌𝛼

1−𝛾
𝑤

𝛾−1
𝐴

𝛼
(
𝛾

𝑞
)
𝛾

)

𝛼+𝛾

1−(𝛼+𝛾)

≥ (1 +
𝛾

𝛼
)𝑤

(
𝜇Φ𝜌𝛼

1−𝛾
𝑤

𝛾−1
𝐴

𝛼
(
𝛾

𝑞
)
𝛾

)

1
1−(𝛼+𝛾)

+ 𝜒

which simplifies to

(𝜇Φ𝜌𝐴
𝛼
)

1
1−(𝛼+𝛾)

(

𝛼

𝑤)

𝛼
1−(𝛼+𝛾)

(

𝛾

𝑞)

𝛾

1−(𝛼+𝛾)

(1 − (𝛼 + 𝛾)) ≥ 𝜒

The firm is willing to use AI pricing whenever this condition holds, so rearranging gives the

smallest 𝜇 such that they will do so:

𝜇(𝑞) =
1

Φ𝜌𝐴𝛼 (

𝑤

𝛼 )

𝛼

(

𝑞

𝛾 )

𝛾

(

𝜒

1 − (𝛼 + 𝛾))

1−(𝛼+𝛾)

The assumption that 1 > (𝛼 + 𝛾) ensures that this function is increasing.

E.1.4 Proof of Lemma 4

Proof. Equation E.16 gives the pricing labor input as

𝐿𝑎 =
(
𝛼
1−𝛾

𝑤
𝛾−1

𝐴
𝛼
(
𝛾

𝑞
)
𝛾
𝜇Φ𝜌

)

1
1−(𝛼+𝛾)

1−(𝛼 +𝛾) > 0 by assumption, so 𝐿𝑎 is decreasing in 𝑞. 𝐿𝑏 is strictly positive and does not depend

on 𝑞 or 𝐴, so the AI share 𝐿𝑎
𝐿𝑎+𝐿𝑏

is also strictly decreasing in 𝑞 and strictly increasing in 𝐴.

E.1.5 Proof of Lemma 5

Proof. The share 𝐿𝑎
𝐿𝑎+𝐿𝑏

is increasing in 𝜇 if and only if the ratio 𝐿𝑎
𝐿𝑏

is increasing. Conditional on

adopting AI pricing, the ratio 𝐿𝑎
𝐿𝑏

is given from equations (E.2) and (E.16) by

𝐿𝑎

𝐿𝑏
= 𝛼

1−𝛾

1−(𝛼+𝛾) 𝛾
𝛾

1−(𝛼+𝛾)𝐴
𝛼

1−(𝛼+𝛾)𝑞
−𝛾

1−(𝛼+𝛾)𝑤
1

1−𝛽
−

1−𝛾

1−(𝛼+𝛾) (𝜇Φ𝜌)
1

1−(𝛼+𝛾)
− 1

1−𝛽 (E.6)
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which is increasing in 𝜇 if and only if 1

1−(𝛼+𝛾)
− 1

1−𝛽
≥ 0. Denominators 1 − (𝛼 + 𝛾) and 1 − 𝛽 are

both positive, so the necessary and sufficient condition is equivalent to 𝛽 < 𝛼 + 𝛾 .

E.1.6 Proof of Lemma 6

Proof. Using the first order condition (E.3), the production function for observing components

(16) becomes

𝑁 = 𝐿
𝛽

𝑏
+ 𝐴

𝛼

(

𝑤

𝑞

𝛾

𝛼)

𝛾

𝐿
𝛼+𝛾
𝑎

and the labor choices (E.2) and (E.16) imply

𝑁 =
(

𝜇Φ𝜌𝛽

𝑤 )

𝛽

1−𝛽

+ 𝐴
𝛼

(

𝑤

𝑞

𝛾

𝛼)

𝛾

(
𝛼
1−𝛾

𝑤
𝛾−1

𝐴
𝛼
(
𝛾

𝑞
)
𝛾
𝜇Φ𝜌

)

𝛼+𝛾

1−(𝛼+𝛾)

(E.7)

The right-hand side is increasing in 𝜇 and decreasing in 𝑞, so 𝑁 must be as well for 𝑁 < 𝜈

𝜌
.

E.1.7 Proof of Lemma 7

Proof. The firm’s revenue 𝑦 is given by

𝑦 = ∫
𝑗∈

𝑝𝑗𝑑𝑗(𝑝𝑗)𝑑𝑗

By Lemma 1, the optimal price is 𝑝𝑗 =
𝔼[𝑧𝑗 |Ω]

2𝜂
+ 𝜅

2

= ∫
𝑗∈ (

𝔼[𝑧𝑗 |Ω]

2𝜂
+
𝜅

2)(
𝑧𝑗 −

𝔼 [𝑧𝑗 |Ω]

2
−
𝜂𝜅

2 )
𝑑𝑗

which we can rewrite using unconditional expectations:

=
𝜇

4𝜂
𝔼 [(𝔼 [𝑧𝑗 |Ω] + 𝜂𝜅) (𝑧𝑗 − 𝔼 [𝑧𝑗 |Ω] + 𝑧𝑗 − 𝜂𝜅)]

=
𝜇

4𝜂
𝔼 [(𝔼 [𝑧𝑗 |Ω] + 𝜂𝜅) (𝑧𝑗 − 𝜂𝜅)] =

𝜇

4𝜂
𝔼 [(𝔼 [𝑧𝑗 |Ω] + 𝜂𝜅) (𝔼 [𝑧𝑗 |Ω] − 𝜂𝜅)]

=
𝜇

4𝜂
𝔼 [(𝔼 [𝑧𝑗 |Ω] − 𝑧 + 𝑧 + 𝜂𝜅) (𝔼 [𝑧𝑗 |Ω] − 𝑧 + 𝑧 − 𝜂𝜅)] =

𝜇

4𝜂
(𝕍 [𝔼 [𝑧𝑗 |Ω]] + (𝑧 + 𝜂𝜅)(𝑧 − 𝜂𝜅))

= 𝜇
𝜈𝑅(𝑁) + 𝑧2 − 𝜂2𝜅2

4𝜂

𝜂 > 0, 𝑅(𝑁) is increasing in 𝑁 , and by Lemma 6, 𝑁 is increasing in 𝜇 and decreasing in 𝑞.
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E.1.8 Proof of Lemma 8

Proof. Firms produce with constant marginal cost 𝜅, so the firm’s average markup is given by

𝑚 =
𝑦

𝜅 ∫
𝑗∈ 𝑑𝑗(𝑝𝑗)𝑑𝑗

− 1

By Lemma 1, the optimal price is 𝑝𝑗 =
𝔼[𝑧𝑗 |Ω]

2𝜂
+ 𝜅

2
, so the demand function implies

=
𝑦

𝜅 ∫
𝑗∈ (

𝑧𝑗 −
𝔼[𝑧𝑗 |Ω]

2
−

𝜂𝜅

2 )
𝑑𝑗

− 1

which we can rewrite using unconditional expectations:

=
𝑦

𝜅𝜇𝔼
[
𝑧𝑗 −

𝔼[𝑧𝑗 |Ω]
2

−
𝜂𝜅

2 ]

− 1 =
𝑦

𝜅𝜇 (
𝑧

2
−

𝜂𝜅

2 )
− 1 (E.8)

Then substitute for revenue with equation (18):

𝑚 =
𝜈𝑅(𝑁) + 𝑧2 − 𝜂2𝜅2

4𝜂𝜅 (
𝑧

2
−

𝜂𝜅

2 )
− 1

By Lemma 6, 𝑅(𝑁) is increasing in 𝜇 and decreasing in 𝑞, and 𝑧

2
−

𝜂𝜅

2
is necessarily positive.

E.1.9 Proof of Lemma 9

Proof. Result (1): The definition (10) implies Φ is increasing in 𝑧̄ because we assumed 𝑧̄ > 𝜂𝜅 so

that firms make positive profits. 𝐿𝑏 is increasing in Φ by equation (E.2), 𝐿𝑎 is increasing in Φ by

equation (E.16), and 𝐶 is increasing in 𝐿𝑎 by equation (E.3).

Result (2): The labor ratio 𝐿𝑎
𝐿𝑏

is increasing in Φ if and only if 𝛽 < 𝛼 + 𝛾 by equation (E.6), and

the share 𝐿𝑎
𝐿𝑎+𝐿𝑏

is increasing in the ratio 𝐿𝑎
𝐿𝑏

.

Result (3): Factor observation 𝑁 is increasing 𝑧̄ by Result (1). Per equation (18), revenue 𝑦 is

increasing in both 𝑁 and 𝑧̄.

Result (4): Gross profits 𝜋 (i.e. before accounting for pricing costs) are

𝜋 = 𝑦 − 𝜅 ∫
𝑗∈

𝑑𝑗(𝑝𝑗)𝑑𝑗
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which simplifies by equations (18) and (E.8):

= 𝜇
𝜈𝑅(𝑁) + 𝑧2 − 𝜂2𝜅2

4𝜂
− 𝜅𝜇

(

𝑧

2
−
𝜂𝜅

2 )
=

𝜇

2𝜂
(𝜌𝑁 + (𝑧̄ − 𝜂𝜅)

2
)

Again, 𝑁 is increasing in 𝑧̄ by Result (1), and (𝑧̄ − 𝜂𝜅)2 is increasing in 𝑧̄ because we assumed

𝑧̄ > 𝜂𝜅.

E.1.10 Proof of Proposition 5

Proof. Express a firm’s gross profits as a function of demand 𝑧̄ and market size 𝜇:

𝜋(𝑧̄, 𝜇) =
𝜇

2𝜂
(𝜌𝑁(𝑧̄, 𝜇) + (𝑧̄ − 𝜂𝜅)

2
)

where the function 𝑁(𝑧̄, 𝜇) is given by equation (E.7).

Demand 𝑧̄ affects gross profits by

𝜕𝜋(𝑧̄, 𝜇)

𝜕𝑧̄
=

𝜇𝜌

2𝜂

𝜕𝑁(𝑧̄, 𝜇)

𝜕𝑧̄
+
𝜇

𝜂
(𝑧̄ − 𝜂𝜅)

Firms differ by their market size 𝜇. The effect of market size on the derivative is

𝜕2𝜋(𝑧̄, 𝜇)

𝜕𝜇𝜕𝑧̄
=

𝜌

2𝜂

𝜕𝑁(𝑧̄, 𝜇)

𝜕𝑧̄
+
𝜇𝜌

2𝜂

𝜕2𝑁(𝑧̄, 𝜇)

𝜕𝜇𝜕𝑧̄
+
𝑧̄ − 𝜂𝜅

𝜂
(E.9)

The partial derivatives are
𝜕𝑁(𝑧̄, 𝜇)

𝜕𝑧̄
=

𝜕𝑁(𝑧̄, 𝜇)

𝜕Φ

𝜕Φ

𝜕𝑧̄

=
((

𝛽

1 − 𝛽)(

𝜇𝜌𝛽

𝑤 )

𝛽

1−𝛽

Φ
𝛽

1−𝛽
−1
+

...
(

𝛼 + 𝛾

1 − (𝛼 + 𝛾))
𝐴

𝛼

(

𝑤

𝑞

𝛾

𝛼)

𝛾

(
𝛼
1−𝛾

𝑤
𝛾−1

𝐴
𝛼
(
𝛾

𝑞
)
𝛾
𝜇𝜌

)

𝛼+𝛾

1−(𝛼+𝛾)

Φ
𝛼+𝛾

1−(𝛼+𝛾)
−1

)

𝜕Φ

𝜕𝑧̄
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and

𝜕2𝑁(𝑧̄, 𝜇)

𝜕𝜇𝜕𝑧̄
=
((

𝛽

1 − 𝛽)

2

(

𝜌𝛽

𝑤 )

𝛽

1−𝛽

(𝜇Φ)
𝛽

1−𝛽
−1
+

...
(

𝛼 + 𝛾

1 − (𝛼 + 𝛾))

2

𝐴
𝛼

(

𝑤

𝑞

𝛾

𝛼)

𝛾

(
𝛼
1−𝛾

𝑤
𝛾−1

𝐴
𝛼
(
𝛾

𝑞
)
𝛾
𝜌
)

𝛼+𝛾

1−(𝛼+𝛾)

(𝜇Φ)
𝛼+𝛾

1−(𝛼+𝛾)
−1

)

𝜕Φ

𝜕𝑧̄

By assumption 𝑧̄ > 𝜂𝜅, so per the definition (10) 𝜕Φ

𝜕𝑧̄
> 0. Thus, all terms in equation (E.9) are

positive.

E.2 Stylized Model: Time-Series and Cross-Section Data

Table F1: Time Series of AI pricing adoption

Year AI pricing Share Adoption Rate AI Computing Cost

2010 0.12% 0.22% $0.441
2011 0.06% 0.13% $0.374
2012 0.10% 0.27% $0.308
2013 0.14% 0.38% $0.241
2014 0.25% 0.46% $0.185
2015 0.25% 0.50% $0.192
2016 0.48% 0.85% $0.086
2017 0.63% 1.66% $0.100
2018 1.00% 1.89% $0.090
2019 1.33% 2.35% $0.064
2020 1.34% 2.32% $0.039
2021 1.62% 4.62% $0.036
2022 1.56% 3.51% $0.033
2023 1.36% 3.44% $0.017

Notes: The data source for the AI Pricing is our Lightcast, and the data
source for the AI computing cost is Epoch AI.

Time Series of the AI Computing Costs Our time-series data for the AI computing costs 𝑞

in the model is calculated using the microdata of the cost efficiency of major machine-learning

(ML) GPUs from a real-time database "Data on ML GPUs" updated by Epoch AI. The database

keeps tracking the release dates, release prices, and performance measures of all the major ML

GPUs since 2008. Most of these are Nvidia GPUs, mainly in the GeForce series. Others include

specialized GPUs such as Nvidia Tesla GPUs. Since different GPUs could have different focuses,

we focused on the GeForce series to calculate cost efficiency.

We first deflate the release prices by the Consumer Price Index, with the 2023 price normalized

53

www.epochai.org
https://airtable.com/appDFXXgaG1xLtXGL/shr5STcUv1HmzUIyw/tblNMdPBHaKqJJbW6
www.epochai.org


to 1 dollar. We then choose the single precision giga (1 billion) floating-point operations per

second (GFLOPs) as our measure of performance. We then calculate the inflation-adjusted dollar

per performance, dividing the former by the latter. We average the dollar per performance if

there are multiple releases within a year, and we linearly interpolate the dollar per performance

if there are no releases for a specific year. Table F1 column 5 shows this data series.

Table F2: Cross Section of AI Pricing in 2023

Size Group Log Sales AI pricing Share Adoption Rate Observations

1 0.8516183 0.00% 0.00% 382
2 2.759726 0.00% 0.00% 383
3 3.460735 0.00% 0.00% 383
4 3.975862 0.00% 0.00% 382
5 4.383954 0.00% 0.00% 383
6 4.735429 0.00% 0.00% 383
7 5.013049 0.00% 0.00% 382

8 5.263219 0.83% 0.26% 383
9 5.52475 0.58% 0.52% 383
10 5.765324 1.95% 1.57% 383
11 6.020897 0.38% 1.05% 382
12 6.261518 1.29% 2.09% 383
13 6.494464 1.24% 1.31% 383
14 6.765912 0.63% 1.05% 382
15 7.022635 1.07% 2.09% 383
16 7.327437 0.88% 3.39% 383
17 7.672688 1.74% 4.71% 382
18 8.082669 1.59% 9.40% 383
19 8.609992 1.06% 11.49% 383
20 9.922308 3.69% 30.03% 383

Notes: The data source is our Lightcast Compustat Quarterly merged dataset in 2023. We
exclude two firms that specifically may provide AI pricing as a service to other firms. In
Group 4, we exclude only one firm that adopts AI pricing: Citizen Inc., an insurance holding
company that provides a strategy of offering traditional insurance products in niche markets.
In Group 6, we exclude only one firm that adopts AI pricing: MicroStrategy Inc., a business
services firm that provides business AI, mobile software, and cloud-based services.

Cross Section of the Size Adoption Correlations Our cross-section data for the size adop-

tion correlations are taken from our Lightcast Compustat merged dataset for the year 2023. We

sort the firm-quarter observations in sales and group them into twenty bins of an equal number

of firm-quarter observations. Table F2 summarizes this data.
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E.3 Extension: Labor Wage Differential

This section extends the baseline model of Section 6 to allow the two types of pricing labor to

have different wages and then explores the consequences.

The firm faces the same pricing problem as in the baseline model, but now, each type of pricing

labor is paid a distinct wage. As before, basic pricing labor 𝐿𝑏 charges wage 𝑤, but AI pricing

labor 𝐿𝑎 charges wage 𝜃𝑤, where 𝜃 > 1 captures the wage premium for AI workers. Computing

still costs 𝑞.

With these modifications, the firm’s problem becomes

max
𝑁 ,𝐿𝑎,𝐿𝑏 ,𝐶

𝜇Φ𝜈𝑅(𝑁) − 𝜃𝑤𝐿𝑎 − 𝑤𝐿𝑏 − 𝑞𝐶 − 𝜒1(𝐿𝑎𝐶 > 0)

𝑠.𝑡. 𝑁 = 𝐹(𝐿𝑎, 𝐿𝑏 , 𝐶)

where 1(𝐿𝑎𝐶 > 0) is an indicator function that takes value 1 if and only if both AI pricing inputs

𝐿𝑎 and 𝐶 are strictly positive. The first order conditions for basic pricing labor (11) and computing

(13) are unchanged, but the first order condition for AI pricing labor (conditional on adoption) is

now

𝜇Φ𝜈𝑅
′
(𝑁 )𝐹𝑎(𝐿𝑎, 𝐿𝑏 , 𝐶) = 𝜃𝑤 (E.10)

Therefore, the marginal products of the two labor types are related by

𝐹𝑎(𝐿𝑎, 𝐿𝑏 , 𝐶) = 𝜃𝐹𝑏(𝐿𝑎, 𝐿𝑏 , 𝐶) (E.11)

and the marginal rate of transformation between AI pricing labor and computing becomes:

𝐹𝑎(𝐿𝑎, 𝐿𝑏 , 𝐶)

𝐹𝑐(𝐿𝑎, 𝐿𝑏 , 𝐶)
=

𝜃𝑤

𝑞
(E.12)

These first-order conditions only apply if the firms adopt non-zero AI pricing. They only do so

if the value of the output from the AI technology (𝐴𝐿𝑎)
𝛼𝐶𝛾 is at least as large as the associated

costs. The new adoption condition is

𝜇Φ(𝐴𝐿𝑎)
𝛼
𝐶

𝛾
≥ 𝜃𝑤𝐿𝑎 + 𝑞𝐶 + 𝜒 (E.13)

If AI pricing commands a wage premium in the labor market (𝜃 > 1), this affects firms’ AI

adoption along both the extensive and intensive margins. AI pricing labor is more expensive, so

firms will be less willing to use the technology at all, and if they do, they will hire less AI pricing
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labor. Proposition E.1 formalizes this result.

Proposition E.1 If 𝛼 + 𝛾 < 1 and 𝜃 > 0 is the AI pricing wage premium, then:

1. The AI share of pricing labor 𝐿𝑎
𝐿𝑎+𝐿𝑏

is decreasing in 𝜃.

2. The minimum market size 𝜇 such that firms are willing to use AI pricing is increasing in 𝜃.

Proof. If firms prefer to adopt AI pricing (condition (E.13)), all of its first order conditions hold.

Basic pricing labor demand is unchanged from the baseline model, given by 𝐿𝑏 = (
𝜇Φ𝜌𝛽

𝑤 )

1
1−𝛽 .

With the wage differential, equation (E.12) becomes

𝜃𝑤

𝑞
=

𝐹𝑎(𝐿𝑎, 𝐿𝑏 , 𝐶)

𝐹𝑐(𝐿𝑎, 𝐿𝑏 , 𝐶)
=

𝛼𝐴𝛼𝐿𝛼−1𝑎 𝐶𝛾

𝛾𝐴𝛼𝐿𝛼𝑎𝐶
𝛾−1

⟹
𝐶

𝐿𝑎
=

𝜃𝑤

𝑞

𝛾

𝛼
(E.14)

and equation (E.11) becomes

𝛼𝐴
𝛼
𝐿
𝛼−1
𝑎 𝐶

𝛾
= 𝜃𝛽𝐿

𝛽−1

𝑏
(E.15)

Plugging in equations (E.2) and (E.14) gives

𝛼𝐴
𝛼
(
𝜃𝑤

𝑞

𝛾

𝛼
)
𝛾
𝐿
𝛼+𝛾−1
𝑎 =

𝜃𝑤

𝜇Φ𝜌

⟹ 𝐿𝑎 =
(
𝛼
1−𝛾

(𝜃𝑤)
𝛾−1

𝐴
𝛼
(
𝛾

𝑞
)
𝛾
𝜇Φ𝜌

)

1
1−(𝛼+𝛾)

(E.16)

The assumption that 𝛼 + 𝛾 < 1 ensures that 𝐿𝑎 is decreasing in 𝜃. 𝐿𝑏 is unaffected by 𝜃, so the AI

pricing share must also be decreasing in 𝜃, proving the first statement.

Equation (E.14) says computing is given by 𝐶 =
𝛾𝜃𝑤

𝛼𝑞
𝐿𝑎, so the condition in equation (E.13)

becomes:

𝜇Φ𝜌𝐴
𝛼
(
𝛾𝜃𝑤

𝛼𝑞
)
𝛾
𝐿
𝛼+𝛾
𝑎 ≥ (1 +

𝛾

𝛼
)𝜃𝑤𝐿𝑎 + 𝜒

Equation (E.16) gives the solution for 𝐿𝑎. Plugging it in:

𝜇Φ𝜌𝐴
𝛼
(
𝛾𝜃𝑤

𝛼𝑞
)
𝛾

(
𝜇Φ𝜌𝛼

1−𝛾
(𝜃𝑤)

𝛾−1
𝐴

𝛼
(
𝛾

𝑞
)
𝛾

)

𝛼+𝛾

1−(𝛼+𝛾)

≥ (1+
𝛾

𝛼
)𝜃𝑤

(
𝜇Φ𝜌𝛼

1−𝛾
(𝜃𝑤)

𝛾−1
𝐴

𝛼
(
𝛾

𝑞
)
𝛾

)

1
1−(𝛼+𝛾)

+𝜒
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which simplifies to

(𝜇Φ𝜌𝐴
𝛼
)

1
1−(𝛼+𝛾)

(

𝛼

𝜃𝑤)

𝛼
1−(𝛼+𝛾)

(

𝛾

𝑞)

𝛾

1−(𝛼+𝛾)

(1 − (𝛼 + 𝛾)) ≥ 𝜒

The firm is willing to use AI pricing whenever this condition holds, so rearranging gives the

smallest 𝜇 such that they will do so:

𝜇(𝑞, 𝜃) =
1

Φ𝜌𝐴𝛼 (

𝜃𝑤

𝛼 )

𝛼

(

𝑞

𝛾 )

𝛾

(

𝜒

1 − (𝛼 + 𝛾))

1−(𝛼+𝛾)

The assumption that 1 > (𝛼 + 𝛾) ensures that this function is increasing in 𝑞 and increasing in 𝜃.

This proves the second statement.
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