
Automation and the Rise of Superstar Firms⋆

Hamid Firooza, Zheng Liub and Yajie Wangc

aFederal Reserve Bank of San Francisco, USA
bFederal Reserve Bank of San Francisco, USA
cUniversity of Missouri, USA

A R T I C L E I N F O

Keywords:
Automation
industry concentration
superstar firms
markup
productivity

A B S T R A C T

We provide empirical evidence suggesting that the rise of superstar firms is linked to automation.
We explain this empirical link in a general equilibrium framework with heterogeneous firms
and variable markups. Firms can operate a labor-only technology or, by paying a per-period
fixed cost, an automation technology that uses both workers and robots. The fixed costs lead
to an economy-of-scale effect of automation, such that larger and more productive firms are
more likely to automate. Automation boosts labor productivity, allowing those large firms to
expand further, raising industry concentration. Since robots substitute for workers, increased
automation raises sales concentration more than employment concentration, consistent with
empirical evidence. Under our calibration, a modest robot subsidy mitigates markup distortions
and improves welfare by stimulating automation investment, bringing aggregate output closer to
the efficient level.

1. Introduction
Industries in the United States have become more concentrated over time, with each major sector increasingly

dominated by a small number of superstar firms (Autor, Dorn, Katz, Patterson and Van Reenen, 2020). Based on
empirical evidence and a theoretical framework, we argue that the rise in automation since the early 2000s has
contributed significantly to the rise of superstar firms, particularly in the manufacturing sector.

Our study is motivated by the observation that the rise of industry concentration in U.S. manufacturing has been
accompanied by steady increases in robot adoption over the past two decades. Figure 1 illustrates this correlation.
Sales concentration in the U.S. manufacturing sector—measured by the sales share of the largest four firms—has
increased from about 40.5 percent in the late 1990s to about 43.5 percent in 2012, while employment concentration
has stayed relatively flat (Panel A, reproduced from Autor et al. (2020)), implying a widening gap between sales
concentration and employment concentration. On the other hand, robot density—measured by the number of industrial
robots per thousand manufacturing employees—has quadrupled since the early 2000s while the relative price of robots
has declined by about 40 percent (Panel B).1

We examine the economic forces that drive the link between automation and the rise of superstar firms. We
first provide some additional stylized facts on the relationship between automation and industry concentration using
Compustat data. We show that, at the industry level, robot density has a significantly positive correlation with sales
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Automation and the Rise of Superstar Firms

Figure 1: Trends in Industry Concentration and Automation in Manufacturing

(a) Industry concentration (b) Robot prices and robot density

Note: Panel (a) is adapted from Autor et al. (2020) with permission from the Oxford University Press (License Number

5241431011126) and shows the industry concentration measured by both the sales share and the employment share of the top

4 �rms (left scale) or the top 20 �rms (right scale) across four-digit industries in the manufacturing sector. Panel (b) displays the

unit value of newly shipped industrial robots de�ated by the personal consumption expenditures price index (green line, left scale)

and robot density measured by the operational stock of industrial robots per thousand manufacturing workers (blue line, right scale).

Both the robot price and the operational stock of industrial robots are obtained from the International Federation of Robotics (IFR).

concentration but a small and insignificant correlation with employment concentration.2 These empirical relations are
robust when we estimate the correlations using an instrumental variable (IV) approach along the line of Acemoglu and
Restrepo (2020). Specifically, we use lagged values of the average robot density at the industry level in five European
economies as an IV for the robot density in the same industries in the United States.3 Our IV regressions suggest that the
rise in sales concentration in the United States is associated with robot adoptions, whereas employment concentration is
not. The estimated correlation between automation and sales concentration is economically important: a one standard
deviation increase in robot density is associated with an increase in the sales share of the top 1% firms of about 10
percentage points, which is equivalent to an increase of one-third of its average value.

To understand the empirical link between automation and industry concentration, we construct a dynamic general
equilibrium model featuring heterogeneous firms, endogenous automation decisions, and variable markups (with
Kimball (1995) preferences). Firms have access to two types of technologies for producing differentiated intermediate
goods: one is the traditional technology that uses labor as the sole input, and the other is an automation technology
that uses both labor and robots with a constant elasticity of substitution. Operating the automation technology incurs
a random per-period fixed cost, but it reduces the marginal cost of production relative to operating the labor-only
technology. Firms also face idiosyncratic, persistent productivity shocks. A firm’s automation decision (i.e., whether
to use the labor-only technology or the automation technology) depends on the realization of the fixed cost relative
to productivity. At a given fixed cost, a larger firm is more likely to automate because it has higher productivity,
higher market power, and thus higher profits. Automation improves a firm’s labor productivity, allowing large, robot-
using firms to expand their sales share further. This economy-of-scale effect leads to a positive connection between
automation and sales concentration. Since robots substitute for workers, the expansion of those large firms relies more
on robots than on workers. Thus, a rise in automation raises sales concentration more than employment concentration,
as we observe in the data.

In our model, a decline in the robot price drives the rise in automation, which in turn impacts industry concentration
through two channels. First, a lower robot price and, therefore, a lower user cost of robots benefits large firms that
operate the automation technology (an intensive-margin effect), enabling large firms to become even larger. Second,
a lower robot price induces more firms to adopt robots (an extensive-margin effect), such that some smaller firms

2Throughout this paper, we focus on industrial robots, which is a specific type of automation technology. We use “automation” and “robots”
interchangeably.

3The five European economies include Denmark, Finland, France, Italy, and Sweden, which all adopted robotics ahead of the United States.
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that initially operate the labor-only technology would switch to the automation technology, reducing the sales share
of the superstar firms and lowering industry concentration. The net effect of a decline in the robot price on industry
concentration can be ambiguous, depending on the magnitude of the declines in the robot price and the calibration of
the model parameters.

We calibrate the model parameters to match several moments observed in the U.S. manufacturing sector. Our
calibrated model matches four key moments in the data, including the share of firms that use robots, their employment
share, aggregate robot density, and the cumulative growth rate of robot density since the early 2000s. Under our
calibration, the intensive-margin effect dominates, such that a decline in the robot price raises the sales concentration.
The decline in the robot price also raises the employment concentration because automation boosts productivity, raising
labor demand of automating firms. However, the increase in employment concentration is smaller than that in sales
concentration because robots substitute for workers. These model predictions are consistent with our empirical evidence
that robot adoptions are significantly correlated with the sales share of the top 1% firms, but not with the employment
share of these firms. Under our calibration, the model predicts that a 40 percent decline in the relative price of robots—a
magnitude observed during the past two decades—can explain about 49 percent of the rise in sales concentration in
the U.S. manufacturing sector. It also explains about 25 percent of the divergence between sales and employment
concentration.

Our calibrated model further predicts that the usage of automation technology is highly skewed toward a small
fraction of large firms, in line with the cross-sectional evidence from the Annual Business Survey (ABS) conducted by
the U.S. Census Bureau (Zolas, Kroff, Brynjolfsson, McElheran, Beede, Buffington, Goldschlag, Foster and Dinlersoz,
2020; Acemoglu, Anderson, Beede, Buffington, Childress, Dinlersoz, Foster, Goldschlag, Haltiwanger, Kroff, Restrepo
and Zolas, 2022).4 For example, according to the ABS, the adoption rate of robots in 2016-2018 by firms in the top
percentile of the employment distribution within 6-digit industries was about 3 times of the adoption rate among firms
in the 50th to 75th percentile (5.1% vs. 1.7%). Acemoglu et al. (2022) argue that this pattern supports the idea that
the adoption of automation technologies involves large integration costs, consistent with our model’s mechanism.
Since larger firms have higher productivity, higher markups, and lower labor shares, our model suggests that the
between-firm reallocation triggered by a decline in the robot price boosts aggregate productivity, increases the average
markup, and reduces the average labor share. Such dynamics echo the reallocation channel documented by Autor
et al. (2020), Acemoglu, Lelarge and Restrepo (2020a), Kehrig and Vincent (2021), and Hubmer and Restrepo (2022).
Furthermore, a decline in robot prices raises equilibrium employment in automating firms, because it boosts those
firms’ labor productivity, leading to increased labor demand that dominates the labor-substituting effects of automation.
This employment effect of automation is also in line with the evidence from the firm-level evidence documented by
Zolas et al. (2020) and Aghion, Antonin, Bunel and Jaravel (2021).

The presence of monopolistic competition and variable markups in our model implies that the decentralized
equilibrium allocation is inefficient, creating room for policy interventions to improve social welfare. A robot subsidy
can alleviate the markup distortions. By lowering the user cost of robots, a subsidy reallocates production toward large
automating firms that have high productivity, bringing aggregate output closer to the efficient level. However, since
large firms also have high markups, a robot subsidy also raises the average markup through between-firm reallocation.
Thus, our model implies an interior optimal level of robot subsidy. Under our calibration, a modest robot subsidy
(about 1.41% of the value of robots) maximizes the steady-state welfare, yielding a welfare gain equivalent to about
4.23% of steady-state consumption compared to the laissez-faire benchmark. Although a permanent robot subsidy
raises consumption in the steady state, consumption falls and employment rises in the transition process, reducing the
overall welfare gains. Taking into account the transition dynamics, the optimal subsidy rate for automation is smaller
(about 0.64%) and the ex ante welfare gains (relative to the case with no policy changes) are also smaller, at about
0.43% of consumption equivalent.

2. Related literature
Our work builds on the influential study of Autor et al. (2020), who document evidence of the steady rise of superstar

firms in all major sectors of the U.S. economy since the early 2000s. Autor et al. (2020) discuss a few potential drivers
of the rise of superstar firms (what they call a “winner takes most” mechanism), including greater market competition
(e.g., through offshoring) or scale-biased technological changes driven by intangible capital investment and information
technology. Other potential drivers of the rise in industry concentration have been studied in the literature, including

4The ABS covers a large and nationally representative sample of over 850,000 firms in all private, nonfarm business sectors.
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uneven productivity growth across firms (Furman and Orszag, 2018; Yao, 2022; Choi, Levchenko, Ruzic and Shim,
2024), decline in knowledge diffusion between the frontier and laggard firms (Akcigit and Ates, 2019), a slowdown in
radical innovations since the 1990s (Olmstead-Rumsey, 2019), the rise of specialized firms (Ekerdt and Wu, 2022), and
digital advertising in customer accumulation (Shen, 2023). Our study focuses on the rise in automation technologies
(and in particular, robot adoptions) as a driver of the rise of superstar firms.5

Our model underscores how fixed costs of automation disproportionately favor large, high-productivity firms, and
thus raise sales concentration. The economy-of-scale feature of new technology adoptions has been explored in other
studies, including, for example, Kwon, Ma and Zimmermann (2024), Aghion, Bergeaud, Boppart, Klenow and Li
(2019), Hubmer and Restrepo (2022), Ridder (2023), Lashkari, Bauer and Boussard (2024), Tambe, Hitt, Rock and
Brynjolfsson (2020), and Sui (2022). Relative to these studies, and in particular, the closely related parallel work of
Hubmer and Restrepo (2022), our work makes three contributions.

First, we focus on explaining the link between robot adoptions and industry concentration. We show that the
observed declines in robot prices can explain about half of the observed increase in sales concentration and about
one-quarter of the divergence between sales and employment concentration in the U.S. manufacturing industry during
the past two decades. Hubmer and Restrepo (2022) take a different approach by employing a task-based model in
which firms incur fixed costs to automate new tasks. They show that a decline in the price of capital goods used for
automation—–including not only robots but also advanced technologies such as specialized software and dedicated
machinery—can explain the observed changes in the labor share. Through a similar mechanism (economies of scale in
automation), their model also generates increases in sales concentration. However, they do not address the divergence
between sales and employment concentration–—a salient empirical fact observed both in the time series (Autor et al.,
2020; Hsieh and Rossi-Hansberg, 2019) and across industries (as we document in Section 3).

Second, our model highlights a non-monotonic relation between robot prices and industry concentration, reflecting
the two opposing effects from the intensive margin versus the extensive margin of automation. When the robot price
declines, some medium-sized firms switch technologies from labor-only to automation (i.e., the extensive margin).
Although the drop in the robot price also benefits large and automating firms (intensive margin), when the robot price
becomes sufficiently low, the usage of robots becomes widespread, such that the expansion of the medium-sized firms
through automation erodes the market share of the top 1% firms, reducing sales concentration. This counterfactual
illustrates a crucial difference between automation equipment and general capital equipment: the usage of robots is
heavily skewed toward a small number of superstar firms, whereas the usage of general capital equipment is more
widespread. When automation becomes widespread (e.g., when the robot price is sufficiently low), a further drop
in the robot price may not increase industry concentration and may even reduce it. To our knowledge, this potential
non-monotonic relation between robot prices and industry concentration is new to the literature.

Third, we use our calibrated model to examine the implications of automation policies, such as taxing (or
subsidizing) robots, for macroeconomic allocations and welfare, taking into account transition dynamics under a given
policy. In this aspect, our work contributes to the nascent but rapidly growing literature on automation policies. The
rise in automation has raised an important policy question: Should robots be taxed? Some studies argue in favor of
taxing robots because automation displaces routine workers and raises income inequality (Guerreiro, Rebelo and Teles,
2022; Acemoglu, Manera and Restrepo, 2020b; Beraja and Zorzi, 2022; Costinot and Werning, 2022).6 Our work
contributes to this strand of literature by highlighting a new tradeoff facing automation policies: Taxing robots restrains
the expansion of superstar firms, reducing both markup distortions and aggregate productivity. Under our calibration,
a modest robot subsidy is welfare-improving relative to the laissez-faire equilibrium. Of course, our model abstracts
from many other sources of frictions studied in the literature. Our results imply that, in a more general framework that
incorporates those frictions along with the tradeoff between productivity gains and markup distortions highlighted in
our model, the optimal size of robot taxes would likely be smaller than what is found in the literature.

5Existing studies show that automation can have important implications for employment, wages, and labor productivity (Acemoglu and Restrepo,
2018, 2020; Aghion et al., 2021; Aghion, Antonin, Bunel and Jaravel, 2023; Leduc and Liu, 2024; Firooz, Leduc and Liu, 2024). Automation has also
contributed to wage inequality by displacing routine jobs in middle-skill occupations (Autor, Levy and Murnane, 2003; Autor, Dorn and Hanson,
2013; Jaimovich and Siu, 2020; Prettner and Strulik, 2020). There is also evidence that robot adoptions are associated with declines in the labor
share (Autor and Salomons, 2018; Acemoglu et al., 2020a; Bergholt, Furlanetto and Maffei-Faccioli, 2022; Jeong, Baek and Peri, 2024).

6Thuemmel (2022) finds that a robot subsidy is optimal when robots are relatively expensive; when robots become sufficiently cheap, it would
be optimal to tax them.
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3. Automation and industry concentration: Some empirical evidence
Figure 1 shows the time-series correlations between industry concentration and automation during the past two

decades. We now present some evidence that the correlations are also present in the cross section of manufacturing
industries.

3.1. Data and measurement
We use firm-level data from Compustat to compute two measures of industry concentration: the sales share and

the employment share of the top 1% of firms in a given industry.7
We construct a measure of robot density for each two-digit industry using data on manufacturing employment and

operational stock of industrial robots from the International Federation of Robotics (IFR).8 We define robot density for
industry 𝑗 in year 𝑡 as

𝑟𝑜𝑏𝑜𝑡𝑗𝑡 =
robot stock𝑗𝑡

thousands of employees𝑗𝑡
. (1)

For robustness, we also consider an alternative measure of industry-level robot density, defined as the operational stock
of robots per million labor hours. The data on industry-level employment (EMP) and labor hours (PRODH) are both
obtained from the NBER-CES Manufacturing Industry Dataset.9 We obtain an unbalanced panel with 12 industries
covering the 12 years from 2007 to 2018.10

Appendix Table A.2 reports the summary statistics of variables. Robot density varies widely in our sample. For
example, the standard deviation of robot density (in log units) is 2.36, which is almost 5 times the mean (0.48).
The variations in robot density reflect both within-industry changes in robot adoptions over time and across-industry
heterogeneity in the adoption rates and heterogeneous growth rates of robot use. Industry concentration in our sample
also displays large variations. For example, the sales share of the top 1% of firms averages about 30 percent, with a
standard deviation of about 13 percent. The employment share of the top 1% of firms averages about 27 percent and
varies less than the sales share, with a standard deviation of about 8 percent.

3.2. Cross-sectional correlations
In our sample, different industries experienced different growth rates in robot adoptions over time. This pattern can

be visualized by the scatter plots in Figure 2, which shows the long differences in industry concentration against those
in robot density during the sample periods from 2007 to 2018 in 12 two-digit manufacturing industries. The figure
shows that, some industries (such as basic metals and machinery) experienced much larger increases in robot density
than others (such as plastics and chemicals or electronics). There are large variations in the long-differences in both
sales concentration and employment concentration across the 12 industries. Those industries with greater cumulative
changes in robot density also experienced larger cumulative changes in sales concentration (Panel A). In contrast,
changes in employment concentration are uncorrelated with those in robot density (Panel B).11 These cross-sectional
correlation patterns are in line with the time-series correlations shown in Figure 1.

3.3. Correlations from panel-data regressions
The cross-sectional correlations shown in Figure 2 do not capture industry-level variations in robot density and

industry concentration over time and the linear trend line reflects the unconditional cross-sectional correlations. We now
7Using a percentile is more appropriate than using a specific number of firms as the cutoff for our sample, given that the total number of public

firms in Compustat changes greatly across time. The top 1% of firms is comparable to the top four firms analyzed by Autor et al. (2020), since an
average four-digit manufacturing industry has around 364 firms and therefore the top four firms are approximately equivalent to the top 1% of firms.

8According to the IFR definition, industrial robots are automatically controlled, reprogrammable, and multipurpose manipulators with several
axes.

9The IFR uses the International Standard Industrial Classification (ISIC, Rev. 4) for industry classification, while NBER-CES and Compustat
use the NAICS classification. We match the ISIC Rev. 4 industry codes with the NAICS2017US codes using the concordance table from the U.S.
Census Bureau.

10We selected 2007 as the starting point due to the limited availability of IFR data on U.S. industrial robots at the two-digit industry level prior
to that year. Since we measure industry concentration by the share of the top 1% of firms within an industry, we exclude industries that have fewer
than 10 firms in our sample (e.g., industry 29, automotive). Our sample includes 12 industries, identified by their ISIC rev4 codes: 10-12, 13-15,
16&31, 17-18, 19-22, 23, 24, 25, 26-27, 28, 30, D&E. Appendix Table A.1 reports the description of industries in our sample. Note that the sample
sizes for some variables are smaller than 12 × 12 = 144 because of missing values in some industry-year cells.

11The results are similar when we measure robot density using the operational stock of robots per million hours for each industry (see Figure A.1
in the appendix).
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Figure 2: Industry Concentration and Robot Density

Panel A. Sales Concentration Panel B. Employment Concentration

Note: This �gure shows the cumulative changes in sales concentration (Panel A) and employment concentration (Panel B) against

changes in robot density. The industry concentration is measured by the share of the top 1% of �rms within an industry. Robot

density is measured by the operational stock of industrial robots per thousand workers in each industry. The cumulative change is

the long di�erence between the ending value and the starting value of each variable during the years from 2007 to 2018. Since we

have an unbalanced panel, we use the �rst (last) year with non-missing values as the starting (ending) point for calculating the long

di�erences. The circle size indicates an industry's sales share in the initial year (2007). The line shows the prediction from a linear

regression weighted by industries' initial sales shares. The slope coe�cient for sales concentration (Panel A) is 0.022 with a standard

error of 0.008. The slope coe�cient for employment concentration (Panel B) is −0.0013 with a standard error of 0.010.
Source: IFR, NBER-CES, Compustat, and authors' calculation

estimate the correlations between automation and industry concentration based on panel-data regressions, controlling
for industry and year fixed effects. Specifically, we estimate the following OLS specification

𝑌𝑗𝑡 = 𝛽 log(𝑟𝑜𝑏𝑜𝑡𝑗𝑡) + 𝛾𝑗 + 𝛿𝑡 + 𝜀𝑗𝑡, (2)

where the dependent variable 𝑌𝑗𝑡 is a measure of industry concentration in industry 𝑗 in year 𝑡 (sales or employment
share of the top 1% of firms), and 𝛾𝑗 and 𝛿𝑡 are industry and year fixed effects, respectively. The key independent variable
is the log of robot density 𝑟𝑜𝑏𝑜𝑡𝑗𝑡. The term 𝜀𝑗𝑡 denotes the regression residual. The coefficient of interest, 𝛽, measures
the semi-elasticity of industry concentration with respect to robot density, controlling for aggregate conditions and
other fixed industry characteristics.

Panel A of Table 1 reports the estimation results of the OLS regressions. Industries are weighted by their sales shares
in the initial year (i.e., 2007), following the approach by Autor et al. (2020). Standard errors, shown in parentheses, are
clustered at the industry level. Since we have a relatively small number of clusters (with 12 industries), we further report
the wild cluster bootstrap robust 𝑝-value for the estimated coefficients, an approach proposed by Cameron, Gelbach
and Miller (2008).12

Panel A of Table 1 shows that robot density is positively correlated with sales concentration (i.e., the sales share
of the top 1% of firms), with the correlation being statistically significant at the 95 percent confidence level (Columns
(1) and (2)). The point estimate in Column (1) implies that, in an industry with robot density (in log units) that is one
standard deviation above the average, the sales share of the top 1% of firms is about 5 percentage points, or equivalently
about 16 percent, above the sample mean (the average sales share of the top 1% of firms in our sample is about 31%).13

12We use the “boottest” Stata command developed by Roodman, Nielsen, MacKinnon and Webb (2019).
13The standard deviation of logged robot density is 2.36. The point estimate in Column (1) indicates that a one standard deviation increase in

logged robot density implies that the sales share of the top of 1% firms increases by 0.021 × 2.36 ≈ 5 percentage points, or about 16 percent of the
mean of the sales share.
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Table 1

Regressions of Industry Concentration on Robot Density

Panel A: OLS
top 1% share of sales top 1% share of emp

(1) (2) (3) (4)

ln(robot/thousand emp) 0.021∗∗ 0.002
(0.007) (0.015)

ln(robot/million hours) 0.021∗∗ 0.002
(0.007) (0.015)

Observations 117 117 104 104
Industry FE ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓

Wild Bootstrap 𝑝-value 0.049 0.051 0.804 0.812

Panel B: IV (second stage)
top 1% share of sales top 1% share of emp

(1) (2) (3) (4)

ln(robot/thousand emp) 0.038∗∗ 0.012
(0.019) (0.016)

ln(robot/million hours) 0.036∗ 0.014
(0.020) (0.016)

Observations 117 117 104 104
Industry FE ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓

Anderson-Rubin 𝑝-value 0.000 0.001 0.474 0.401
Wild Bootstrap 𝑝-value 0.019 0.047 0.385 0.306

Note: This table shows OLS and IV (second-stage) regression results from the empirical speci�cation (2). Dependent variables are
the sales share (�rst two columns) and employment share (last two columns) of the top 1% of �rms. The industry-level robot density

is measured by the operational stock of industrial robots per thousand workers or per million labor hours within the industry. The IV

for the U.S. robot density is the one-year lag of the robot density averaged over �ve European countries (EURO5). In all regressions,

industries are weighted by their sales shares in the initial year (2007), and the regressions also control for industry and year �xed

e�ects. Standard errors in parentheses are clustered at the industry level. The last rows in both panels show the 𝑝-values of the wild
cluster bootstrap inferences for the estimated coe�cients, an approach proposed by Cameron et al. (2008) for linear regressions with

a small number of clusters. The second from the last row in Panel B shows the 𝑝-values of Anderson-Rubin weak instrument robust

tests adjusted for heteroskedasticity. Stars denote the statistical signi�cance: * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.

The estimated correlation between the hours-based measure of robot density and sales concentration is very similar in
magnitude and statistical significance (Column (2)).

In contrast, the correlation of robot density with employment concentration (i.e., the employment share of the top
1% of firms), although positive, is much smaller than that with sales concentration, and the estimated correlations are
statistically insignificant (Columns (3) and (4)).14 These regression results corroborate well with the time-series and
cross-sectional patterns illustrated in Figures 1 and 2, respectively.

3.4. An instrumental-variable approach
The correlations between robot density and industry concentration estimated from the OLS may suffer from an

omitted variable bias that can arise when a time-varying industry-level factor (such as industry-specific productivity)
affects both robot density and concentration in the industry.

To mitigate concerns about omitted-variable biases, we use an IV approach following Acemoglu and Restrepo
(2020). Specifically, we use lags of industry-level robot adoptions in five European countries (EURO5) as an IV for
robot adoptions in the United States in the same industries. The EURO5 economies include Denmark, Finland, France,

14There are fewer observations for employment concentration than sales concentration due to a higher occurrence of missing employment data
in Compustat.
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Italy, and Sweden, which all adopted robotics ahead of the United States, partly driven by their more rapidly aging
population.15

Similar to our measure of robot density for the United States, we measure robot density in the EURO5 economies
by the number of robots per thousand employees (or per million of labor hours) in each industry, with the employment
(and hours) data taken from EUKLEMS. The average robot density of the five European economies in industry 𝑗 at
time 𝑡 is calculated as

𝑟𝑜𝑏𝑜𝑡𝐸𝑈𝑅𝑂5
𝑗𝑡 = 1

5
∑

𝑘∈𝐸𝑈𝑅𝑂5

robot stock𝑘𝑗𝑡
thousands of employees𝑘𝑗𝑡

, (3)

where 𝑘 is an index of economies in the EURO5 group. We use the one-year-lagged EURO5 robot density as the IV
for the U.S. robot density in our industry-level panel regression.

Our two-stage least squares (2SLS) regression specification has one endogenous regressor with one IV, and is thus
just-identified. In the first stage, we regress robot density (in log units) at the two-digit industry level in the U.S. on
lagged average robot density (also in log units) in the EURO5 group in the corresponding industries, controlling for
industry and year fixed effects (see Table A.3 in the Appendix for the first-stage regression results). In the second stage,
we regress our measures of U.S. industry concentration on the predicted robot density from the first stage.

Panel B of Table 1 displays the IV estimation results. The estimation shows that sales concentration in the U.S.
manufacturing industries is positively and significantly correlated with the robot density predicted from the lagged
robot density in the EURO5 economies (Columns (1) and (2)). A one standard deviation increase in the predicted
robot density (in log units) is associated with an increase in the sales share of the top 1% firms of about 9 percentage
points, or equivalently, about 29 percent relative to its sample average.16 This number is higher than the 5 percentage
points (or 16 percent) obtained from the OLS estimation (Panel A of Table 1), suggesting that omitted variables
lead to a downward bias of the coefficient in the OLS regressions. In comparison, the estimated correlations between
employment concentration and the predicted robot density are small and statistically insignificant (Columns (3) and
(4)). Our evidence therefore implies that automation is associated with the rise in sales concentration as well as the
divergence between sales and employment concentration in the manufacturing sector.17

Although the F-statistics from the first-stage regression suggest that our instrument is weak (see Table A.3), our
IV estimation and inferences are robust to potentially weak instruments, as indicated by the Anderson-Rubin (AR) test
(Anderson and Rubin, 1949). In the second from the last row of Panel B of Table 1, we report the 𝑝-values of the AR
test adjusted for heteroskedasticity. The 𝑝-values indicate that the estimated correlations of robot density with sales
concentration are robust to weak instruments at the 99% confidence level, while those with employment concentration
are not significant, with a 𝑝-value of the AR test larger than 0.40.18

The IV regressions help mitigate but not dispel concerns about omitted-variable biases. For example, some
common, unobserved shocks might hit industries across the world and drive industry concentration. If so, an industry-
level omitted variable for the U.S. might also be an industry-level omitted variable for Europe as well. Such unobserved
shocks, if important, could potentially invalidate the exclusion restrictions of our IV.19 A related concern is that an
increase in robot adoptions by European firms could drive out the least competitive firms in the European market,
raising U.S. industry concentration through global sales, rather than through U.S. robot adoptions. If this global sales
channel is important, then it might also invalidate the exclusion restrictions.20 Given these concerns and the limitations

15Following Acemoglu and Restrepo (2020), we exclude Germany from our sample because it is far ahead of the other countries in robot
adoptions, making it less informative for the U.S. adoption trends than those trends in the EURO5 economies.

16The estimation shown in Panel B of Table 1 implies that a one standard deviation increase in robot density (i.e., an increase of 2.36 log points)
is associated with an increase in the sales share of the top 1% firms by 0.038 × 2.36 ≈ 9 percentage points. In our sample, the average sales share of
the top 1% firms is about 31%. Thus, our estimation suggests that a one standard deviation increase in robot density is associated with an increase
in the sales share of the top 1% firms by about 29 percent relative to its sample average.

17With our small sample (covering 12 industries over 12 years), the estimation results are relatively noisy, and the estimated coefficients in
Columns (1) and (3) (or those in Columns (2) and (4)) in Panel B of Table 1 are not statistically different from each other.

18The AR test is one of the most powerful tests for the null hypothesis in the second stage when the model is just-identified, regardless of the
instrument’s strength (Moreira, 2009; Andrews, Stock and Sun, 2019).

19Acemoglu and Restrepo (2020) provide a rebuttal to this concern. They argue that the trend of European robot adoptions is largely driven by its
own demographic trends (aging population) and it is uncorrelated with other major global trends, such as import competition, offshoring, declines
of routine jobs, and capital deepening.

20The share of sales of U.S. affiliates in the European markets has been small relative to the total sales of the U.S. parent companies. For example,
according to the Bureau of Economic Analysis, the sales of majority-owned U.S. affiliates in EURO5 were $474 billion in 2020, about 3.4% of the
total sales of their U.S. parent companies ($13.85 trillion).

Firooz, Liu, Wang: Preprint submitted to Elsevier Page 8 of 35



Automation and the Rise of Superstar Firms

of the robot data, the IV estimation should not be interpreted as direct evidence of causal effects of robot adoptions on
industry concentration.

Nonetheless, the empirical linkage between automation and industry concentration seems quite robust. The rise in
automation has been accompanied by a rise of superstar firms, characterized by an increase in sales concentration and
a divergence between sales and employment concentrations.

4. The Model
To understand the empirical link between automation and industry concentration, we construct a dynamic general

equilibrium model featuring heterogeneous firms, variable markups, and endogenous automation decisions.

4.1. Households
The economy is populated by a continuum of identical, infinitely lived households of a unit measure. All agents

have perfect foresight. The representative household has the utility function

∞
∑

𝑡=0
𝛽𝑡

[

ln𝐶𝑡 − 𝜒
𝑁1+𝜉

𝑡
1 + 𝜉

]

, (4)

where 𝐶𝑡 denotes consumption at time 𝑡, 𝑁𝑡 denotes labor supply, 𝛽 ∈ (0, 1) is a subjective discount factor, 𝜉 ≥ 0 is
the inverse Frisch elasticity of labor supply, and 𝜒 > 0 is the weight on the disutility from working.

The household faces the sequence of budget constraints

𝐶𝑡 +𝑄𝑎,𝑡𝐼𝑎,𝑡 ≤ 𝑊𝑡𝑁𝑡 + 𝑟𝑎,𝑡𝐴𝑡 + 𝜋𝑡, (5)

where 𝐼𝑎,𝑡 denotes the investment in robots, 𝐴𝑡 denotes the beginning-of-period robot stock, 𝑟𝑎,𝑡 is the real rental rate
of robots, 𝑄𝑎,𝑡 denotes the relative price of robots, 𝑊𝑡 denotes the real wage rate, and 𝜋𝑡 denotes profits from the firms
that the household owns. The stock of robots evolves according to the law of motion

𝐴𝑡+1 = (1 − 𝛿𝑎)𝐴𝑡 + 𝐼𝑎,𝑡, (6)

where 𝛿𝑎 ∈ [0, 1] denotes the robot depreciation rate.
The household takes the prices 𝑄𝑎,𝑡, 𝑊𝑡, and 𝑟𝑎,𝑡 as given, and maximizes the utility function (4) subject to the

budget constraints (5). The optimizing consumption-leisure choice implies the labor supply equation

𝑊𝑡 = 𝜒𝑁𝜉
𝑡 𝐶𝑡. (7)

The optimizing choice of robot accumulation implies that

𝑄𝑎,𝑡 = 𝜌𝑡,𝑡+1
[

𝑟𝑎,𝑡+1 +𝑄𝑎,𝑡+1(1 − 𝛿𝑎)
]

, (8)

where 𝜌𝑡,𝑡+1 ≡ 𝛽 𝐶𝑡
𝐶𝑡+1

is the stochastic discount factor (SDF).

4.2. Final goods producers
There is a continuum of monopolistically competitive intermediate producers indexed by 𝑗 ∈ [0, 1]. Final goods

producers make a composite homogeneous good out of the intermediate varieties and sell it to consumers in a perfectly
competitive market, with the final goods price normalized to one. The final good 𝑌𝑡 is produced using a bundle of
intermediate goods 𝑦𝑡(𝑗), according to the Kimball aggregator

∫

1

0
Λ(

𝑦𝑡(𝑗)
𝑌𝑡

)𝑑𝑗 = 1. (9)
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4.3. Demand for intermediate goods
Denote the relative output of firm 𝑗 by 𝑞𝑡(𝑗) ∶= 𝑦𝑡(𝑗)

𝑌𝑡
. Taking the intermediate goods price 𝑝𝑡(𝑗) as given, the

cost-minimizing decision of final good producers leads to the following demand schedule for intermediate good 𝑗

𝑝𝑡(𝑗) = Λ′(𝑞𝑡(𝑗))𝐷𝑡, (10)

where 𝐷𝑡 is a demand shifter given by

𝐷𝑡 =
(

∫ Λ′(𝑞𝑡(𝑗))𝑞𝑡(𝑗)𝑑𝑗
)−1

. (11)

We follow Klenow and Willis (2016) and assume that21

Λ(𝑞𝑡) = 1 + (𝜎 − 1)exp(1
𝜀
)𝜀

𝜎
𝜀−1[Γ(𝜎

𝜀
, 1
𝜀
) − Γ(𝜎

𝜀
,
𝑞𝜀∕𝜎𝑡
𝜀

)], (12)

with 𝜎 > 1, 𝜀 ≥ 0, and Γ(𝑠, 𝑥) denoting the upper incomplete Gamma function

Γ(𝑠, 𝑥) = ∫

∞

𝑥
𝑣𝑠−1𝑒−𝑣𝑑𝑣. (13)

Under the specification (12), we obtain

Λ′(𝑞𝑡(𝑗)) =
𝜎 − 1
𝜎

exp(
1 − 𝑞𝑡(𝑗)

𝜀
𝜎

𝜀
), (14)

which, using the demand schedule (10), implies that the demand elasticity (i.e., price elasticity of demand) faced by
firm 𝑗 is

𝜎(𝑞𝑡(𝑗)) = −
Λ′(𝑞𝑡(𝑗))

Λ′′(𝑞𝑡(𝑗))𝑞𝑡(𝑗)
= 𝜎𝑞𝑡(𝑗)

− 𝜀
𝜎 . (15)

Given this demand elasticity, the firm with relative production 𝑞𝑡(𝑗) charges the optimal markup

𝜇𝑡(𝑗) =
𝜎(𝑞𝑡(𝑗))

𝜎(𝑞𝑡(𝑗)) − 1
. (16)

As a result, larger firms face lower demand elasticities, have more market power, and charge higher markups.22

4.4. Intermediate goods producers
Intermediate producers, from now on indexed by their idiosyncratic productivity 𝜙𝑡, produce differentiated

intermediate goods using one of two technologies: one with labor as the only input, and the other with both labor
and robots as input factors. If the firm uses robots in production, it faces a per-period fixed cost which is realized after
drawing the productivity 𝜙𝑡, to be elaborated below. The production function takes the CES form

𝑦𝑡(𝜙𝑡) = 𝜙𝑡

[

𝛼𝑎𝐴𝑡(𝜙𝑡)
𝜂−1
𝜂 + (1 − 𝛼𝑎)𝑁𝑡(𝜙𝑡)

𝜂−1
𝜂

]
𝜂

𝜂−1
, (17)

where 𝑦𝑡(𝜙𝑡) denotes the firm’s output, 𝑁𝑡(𝜙𝑡) denotes the number of workers, and 𝐴𝑡(𝜙𝑡) ≥ 0 denotes the number
of robots. The labor-only technology corresponds to the special case with 𝐴𝑡(𝜙𝑡) = 0. The parameter 𝜂 > 1 is the
elasticity of substitution between robots and workers. The parameter 𝛼𝑎 measures the relative importance of robot
input in production.

21Aruoba, Oue, Saffie and Willis (2024) employ a different Kimball aggregator and show that their calibrated model is consistent with the
markup distribution in the U.S.

22We make the technical assumption that 𝑞𝑡(𝑗) < 𝜎
𝜎
𝜀 such that the effective demand elasticity is always greater than one. This assumption ensures

a well-defined equilibrium under monopolistic competition. In our quantitative analysis, we find that this constraint is never binding.
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The idiosyncratic productivity shock follows a stationary AR(1) process

ln𝜙𝑡+1 = 𝛾 ln𝜙𝑡 + 𝜀𝑡+1, 𝜀𝑡 ∼ 𝑁(0, 𝜎2𝜙), (18)

where 𝛾 ∈ (0, 1) measures the persistence of the productivity shock and 𝜎𝜙 > 0 denotes the standard deviation of the
innovation.

We assume that to use robots in production, firms face a per-period fixed cost that is proportional to their
productivity. Specifically, a firm with productivity 𝜙𝑡 draws 𝑠𝑡 from the 𝑖.𝑖.𝑑. distribution 𝐹 (⋅) and needs to pay the per-
period cost 𝑠𝑡𝜙𝑡 if it uses robots in production.23 We further assume that the distributions of 𝑠𝑡 and 𝜙𝑡 are independent.
A firm with the realized productivity 𝜙𝑡 that draws a fixed cost 𝑠𝑡 chooses price 𝑝𝑡 and quantity 𝑦𝑡 of its differentiated
product, labor input 𝑁𝑡, and robot input 𝐴𝑡 to solve the dynamic programming problem

𝑉𝑡(𝜙𝑡; 𝑠𝑡) = max
𝑝𝑡,𝑦𝑡,𝑁𝑡,𝐴𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡) − 𝑟𝑎,𝑡𝐴𝑡(𝜙𝑡) − 𝑠𝑡𝜙𝑡1{𝐴𝑡(𝜙𝑡) > 0}+

𝜌𝑡,𝑡+1𝐸𝜙𝑡+1|𝜙𝑡 ∫𝑠𝑡+1
𝑉𝑡+1(𝜙𝑡+1; 𝑠𝑡+1)𝑑𝐹 (𝑠𝑡+1)

]

, (19)

where 1{𝑥} equals one if 𝑥 holds and zero otherwise. The firm hires workers at the competitive real wage rate 𝑊𝑡 and
rents robots at the competitive rental rate 𝑟𝑎,𝑡.

The firm solves the recursive problem (19) subject to the production function (17) and the demand schedule (10).
Since robot operation incurs a fixed cost, a firm facing a sufficiently high 𝑠𝑡 relative to its productivity would choose
to use no robots by setting 𝐴𝑡(𝜙𝑡) = 0.

Appendix B shows that the recursive problem (19) can be simplified to

𝑉𝑡(𝜙𝑡; 𝑠𝑡) = max{𝑉 𝑎
𝑡 (𝜙𝑡) − 𝑠𝑡𝜙𝑡, 𝑉

𝑛
𝑡 (𝜙𝑡)}, (20)

where the continuation value of operating the automation technology (i.e., having 𝐴𝑡(𝜙𝑡) > 0) is given by

𝑉 𝑎
𝑡 (𝜙𝑡) = max

𝑝𝑡,𝑦𝑡,𝑁𝑡,𝐴𝑡>0

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡) − 𝑟𝑎,𝑡𝐴𝑡(𝜙𝑡)
]

+ 𝜌𝑡,𝑡+1𝐸𝜙𝑡+1|𝜙𝑡 ∫𝑠𝑡+1
𝑉𝑡+1(𝜙𝑡+1; 𝑠𝑡+1)𝑑𝐹 (𝑠𝑡+1), (21)

and the continuation value of operating the labor-only technology is given by

𝑉 𝑛
𝑡 (𝜙𝑡) = max

𝑝𝑡,𝑦𝑡,𝑁𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡)
]

+ 𝜌𝑡,𝑡+1𝐸𝜙𝑡+1|𝜙𝑡 ∫𝑠𝑡+1
𝑉𝑡+1(𝜙𝑡+1; 𝑠𝑡+1)𝑑𝐹 (𝑠𝑡+1). (22)

Firms with automation technology in (21) optimally choose their production inputs 𝑁𝑡(𝜙𝑡) and 𝐴𝑡(𝜙𝑡) given their
production 𝑦𝑡(𝜙𝑡). The first-order conditions for cost-minimizing imply the conditional factor demand functions

𝑟𝑎,𝑡 = 𝛼𝑎𝜆
𝑎
𝑡 (𝜙𝑡)𝜙

𝜂−1
𝜂

𝑡

(

𝑦𝑡(𝜙𝑡)
𝐴𝑡(𝜙𝑡)

)
1
𝜂
, (23)

𝑊𝑡 = (1 − 𝛼𝑎)𝜆𝑎𝑡 (𝜙𝑡)𝜙
𝜂−1
𝜂

𝑡

(

𝑦𝑡(𝜙𝑡)
𝑁𝑡(𝜙𝑡)

)
1
𝜂
, (24)

where 𝜆𝑎𝑡 (𝜙𝑡) denotes the marginal cost of production for a firm with productivity 𝜙𝑡 operating the automation
technology:

𝜆𝑎𝑡 (𝜙𝑡) =

[

𝛼𝜂𝑎𝑟
1−𝜂
𝑎,𝑡 + (1 − 𝛼𝑎)𝜂𝑊

1−𝜂
𝑡

]
1

1−𝜂

𝜙𝑡
. (25)

23Assuming that the fixed costs of automation are proportional to firm-level productivity captures the fact that large firms face higher fixed costs
in production, which improves the model calibration as discussed later. However, our qualitative results remain valid even if fixed costs are not
assumed to be proportional to productivity.
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Moreover, firms operating the labor-only technology in (22) choose their labor input 𝑁𝑡(𝜙𝑡) given their production
𝑦𝑡(𝜙𝑡):

𝑁𝑡(𝜙𝑡) =
(1 − 𝛼𝑎)

𝜂
1−𝜂 𝑦𝑡(𝜙𝑡)
𝜙𝑡

. (26)

The marginal cost of production in this case would be

𝜆𝑛𝑡 (𝜙𝑡) =
(1 − 𝛼𝑎)

𝜂
1−𝜂𝑊𝑡

𝜙𝑡
. (27)

Notice that, given the productivity 𝜙𝑡, the marginal cost of production using the labor-only technology is always larger
than that using the automation technology, i.e., 𝜆𝑎𝑡 (𝜙𝑡) ≤ 𝜆𝑛𝑡 (𝜙𝑡).

The problem (20) implies that firms choose to operate the automation technology (i.e., to have 𝐴𝑡(𝜙𝑡) > 0) if and
only if their draw of the fixed automation cost is small enough:

𝑠𝑡 ≤ 𝑠∗𝑡 (𝜙𝑡) ⟺ 𝕀𝑎𝑡 (𝜙𝑡; 𝑠𝑡) = 1, (28)

where 𝕀𝑎𝑡 (⋅) is an indicator of the automation decision, which is a function of the firm-level variables 𝜙𝑡 and 𝑠𝑡, and the
cutoff fixed cost equals:

𝑠∗𝑡 (𝜙𝑡) ≡
𝑉 𝑎
𝑡 (𝜙𝑡) − 𝑉 𝑛

𝑡 (𝜙𝑡)
𝜙𝑡

. (29)

It follows that, for a firm with productivity 𝜙𝑡, the ex ante (i.e., before drawing the automation fixed cost) automation
probability equals 𝐹 (𝑠∗𝑡 (𝜙𝑡)), which is the cumulative density of the fixed cost distribution evaluated at the indifference
point.

Appendix B proves that the automation cutoff can be written as the difference between the flow profit from operating
the automation technology versus that from employing the labor-only technology. In other words,

𝑠∗𝑡 (𝜙𝑡) =
𝜋𝑎
𝑡 (𝜙𝑡) − 𝜋𝑛

𝑡 (𝜙𝑡)
𝜙𝑡

, (30)

where

𝜋𝑎
𝑡 (𝜙𝑡) = max

𝑝𝑡,𝑦𝑡,𝑁𝑡,𝐴𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡) − 𝑟𝑎,𝑡𝐴𝑡(𝜙𝑡)
]

, (31)

subject to the demand schedule (10) and production function (17), and

𝜋𝑛
𝑡 (𝜙) = max

𝑝𝑡,𝑦𝑡,𝑁𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡)
]

, (32)

subject to the same demand schedule and production function with 𝐴𝑡(𝜙𝑡) = 0.

4.5. Equilibrium
The world robot price 𝑄𝑎,𝑡 is exogenously given. The equilibrium consists of aggregate allocations 𝐶𝑡, 𝐼𝑎,𝑡, 𝐴𝑡,

𝑁𝑡, and 𝑌𝑡, the wage rate 𝑊𝑡, the rental rate 𝑟𝑎,𝑡, firm-level allocations 𝐴𝑡(𝜙𝑡), 𝑁𝑡(𝜙𝑡), and 𝑦𝑡(𝜙𝑡), and firm-level
prices 𝑝𝑡(𝜙𝑡) for all 𝜙𝑡 ∈ 𝐺(⋅), where 𝐺(⋅) denotes the ergodic distribution implied by the productivity process (18),
such that (i) taking 𝑊𝑡 and 𝑟𝑎,𝑡 as given, the aggregate allocations 𝐶𝑡, 𝑁𝑡, 𝐴𝑡 solve the representative household’s
optimization problem; (ii) taking 𝑊𝑡, 𝑟𝑎,𝑡, and 𝑌𝑡 as given, the firm-level allocations and prices solve each individual
firm’s optimization problem; and (iii) the markets for the final good and labor clear.

The final goods market clearing condition is given by

𝐶𝑡 +𝑄𝑎,𝑡𝐼𝑎,𝑡 + ∫𝜙𝑡
∫

𝑠∗𝑡 (𝜙𝑡)

0
𝑠𝑡𝜙𝑡 𝑑𝐹 (𝑠𝑡) 𝑑𝐺(𝜙𝑡) = 𝑌𝑡. (33)
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Figure 3: Automation Decision Rules

Note: This �gure shows the automation decisions as a function of �rm-level productivity (𝜙) and the �xed cost of operating the

automation technology (𝑠). Firms with (𝜙, 𝑠) to the lower-right of the solid line choose to automate (the shaded area) and those to

the upper-left of the line choose to use the labor-only technology. A decline in the robot price shifts the indi�erence line upward (from

the solid to the dashed line), inducing more use of the automation technology.

The labor market clearing condition is given by

𝑁𝑡 = ∫𝜙𝑡

𝑁𝑡(𝜙𝑡)𝑑𝐺(𝜙𝑡). (34)

The stock of robots is given by

𝐴𝑡 = ∫𝜙𝑡

𝐴𝑡(𝜙𝑡)𝐹 (𝑠∗𝑡 (𝜙𝑡))𝑑𝐺(𝜙𝑡). (35)

Total investment in robots equals

𝐼𝑎,𝑡 = 𝐴𝑡+1 − (1 − 𝛿𝑎)𝐴𝑡. (36)

5. Model mechanism
In our model, firms are heterogeneous along two dimensions: they face idiosyncratic shocks to both productivity

(𝜙) and the fixed cost of operating the automation technology (𝑠). The automation decision depends on the combination
of the realizations of 𝜙 and 𝑠. Firms face a tradeoff when deciding whether to automate. On the one hand, firms need
to pay a fixed cost 𝑠𝜙 to automate. On the other hand, the marginal cost of production using the automation technology
(equation (25)) is always lower than that using the labor-only technology (equation (27)). Since higher-productivity
firms are larger and charge higher markups, they earn higher profits and therefore are more likely to pay the fixed cost
and automate.

Figure 3 illustrates the automation decision rule. For any given productivity 𝜙, a firm will choose to automate
if the realized fixed cost is sufficiently low. Similarly, for any given fixed cost 𝑠, a firm will automate if the realized
productivity is sufficiently high. There is an upward-sloping line that separates the technology choices. To the right
of the line (high 𝜙 or low 𝑠), firms use the automation technology and to the left of the line, they use the labor-only
technology. Firms with combinations of 𝜙 and 𝑠 on the upward-sloping line are indifferent between the two types of
technologies, where the indifference line is given by the 𝑠∗(𝜙) function in Equation (30).

The location of the indifference line is endogenous, depending on aggregate economic conditions. A decline in
the relative price of robots (𝑄𝑎), for example, will reduce the marginal cost of using the automation technology since
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the robot rental rate declines (Equation (8) implies that 𝑟𝑎 increases with 𝑄𝑎 in the steady state). This would shift the
indifference line upward (from the solid to the dashed line), such that some new firms would adopt robots (the extensive
margin) and those firms already using robots would increase their demand for robots (the intensive margin).

For a given technology choice (labor-only or automation), a high-productivity firm is also a large firm in terms
of both employment and output. Moreover, high-productivity firms are also more likely to use robots at any given
fixed cost, as illustrated in Figure 3. A decline in the relative price of robots improves labor productivity, enabling
those robot-using firms to become even larger and increasing the share of top firms in the product market (through
the intensive margin). However, the decline in robot price also induces some less-productive firms to switch from
the labor-only technology to the automation technology (the extensive margin), partially offsetting the increase in the
sales share of the top firms. The net effect of the decline in the robot price on sales concentration can be ambiguous,
depending on the relative strength of the extensive versus the intensive margin effects. As we will show below, under
our calibration, the intensive margin effect dominates, such that a lower robot price leads to a higher concentration of
sales in large firms. This model prediction is consistent with the empirical evidence presented in Section 3.

An increase in the sales share of large firms following a decline in the robot price does not directly translate
into an increase in the employment share of those firms. Since robots substitute for workers, large robot-using firms
can increase production without proportional increases in labor input. Additionally, as these firms grow, they tend to
charge higher markups. Thus, the share of employment of large firms increases by less than their sales share. This is
the key model mechanism through which automation can contribute to the increase in sales concentration as well as
the divergence between sales concentration and employment concentration.

6. Calibration
To assess the quantitative importance of the automation mechanism for explaining the observed rise in sales

concentration and the divergence between sales and employment concentration in the U.S. manufacturing sector, we
calibrate the steady state equilibrium of the model to match moments in the manufacturing data. Appendix C.1 outlines
the computational algorithm to solve for the steady-state equilibrium. We focus on the manufacturing sector for two
reasons. First, automation is more prevalent in the manufacturing sector than in the whole economy. According to
the 2019 ABS, about 8.7% of manufacturing firms use robots and those firms employ about 45.1% of manufacturing
workers. In comparison, in the whole economy, only about 2% of firms use robots and they employ about 15.7%
of workers (Acemoglu et al., 2022).24 Second, the increase in sales concentration in the manufacturing sector was
accompanied by a divergence between sales and employment concentration in the past two decades (see Figure 1 and
Autor et al., 2020).

Table 2 displays the calibrated parameters. We calibrate a subset of the parameters based on external sources in the
literature (Panel A) and the remaining parameters by matching moments in the data (Panel B).

One period in the model corresponds to a quarter of a year. We set the subjective discount factor to 𝛽 = 0.99,
implying an annual real interest rate of 4%. We set the inverse Frisch elasticity to 𝜉 = 0.5, following Rogerson and
Wallenius (2009). We normalize the disutility from working to 𝜒 = 1. We calibrate the quarterly robot depreciation
rate to 𝛿𝑎 = 0.02, implying an average robot lifespan of about 12 years, in line with the assumption made by the IFR
in imputing the operational stock of industrial robots. We set the persistence of idiosyncratic productivity shocks to
𝛾 = 0.95 following Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry (2018). We set the standard deviation
of productivity shocks to 𝜎𝜙 = 0.1, according to the estimation by Bloom et al. (2018).25 To calibrate the elasticity
parameters 𝜎 and 𝜖 in the Kimball aggregator, we follow Edmond, Midrigan and Xu (2021) and set 𝜎 = 10.86 and
𝜖∕𝜎 = 0.16.

We calibrate the remaining parameters to match several key moments in the micro-level data. We assume that the
fixed cost of automation follows a log-normal distribution ln(𝑠) ∼  (0, 𝜎2𝑎), where 𝜎𝑎 is the standard deviation. The
four parameters to be calibrated include the relative price of robots 𝑄𝑎, the standard deviation of the fixed cost of

24The 2019 ABS also shows that, within the manufacturing sector, the usage of robots was also more prevalent than that of other advanced
technologies such as AI.

25Bloom et al. (2018) estimate a two-state Markov switching process of firm-level volatility. They find that the low standard deviation is 0.051
and the high value is 0.209. Their estimated transition probabilities suggest that the unconditional probability of the low standard deviation is 68.7%.
Therefore, the average standard deviation is 0.1 (=0.051*68.7%+0.209*(1-68.7%)).
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Table 2

Calibrated Parameters and Matched Moments

Parameter Notation Value Sources/Matched Moments

Panel A: Parameters calibrated to match external sources

Discount factor 𝛽 0.99 4% annual interest rate
Inverse Frisch elasticity 𝜉 0.5 Rogerson and Wallenius (2009)
Working disutility weight 𝜒 1 Normalization
Robot depreciation rate 𝛿𝑎 0.02 8% annual depreciation rate
Productivity persistence 𝛾 0.95 Bloom et al. (2018)
Productivity standard dev. 𝜎𝜙 0.1 Bloom et al. (2018)
Demand elasticity parameter 𝜎 10.86 Edmond et al. (2021)
Super elasticity 𝜖∕𝜎 0.16 Edmond et al. (2021)

Panel B: Parameters calibrated to match moments in data

Relative price of robots 𝑄𝑎 48.90 Fraction of automating �rms
SD of log automation �xed costs 𝜎𝑎 3.38 Employment share of automating �rms
Robot input weight 𝛼𝑎 0.37 Robot density
Elasticity of substitution 𝜂 2.03 Growth rate of robot density

Panel C: Matched Moments

Moments Data Model

Fraction of automating �rms 8.7% 8.7%
Employment share of automating �rms 45.1% 45.1%
Robot density 0.02 0.02
Growth rate of robot density 300% 300%

Note: This table presents the calibrated parameters and matched moments in the model. Panel A reports the externally calibrated

parameters and their sources. Panel B presents the parameters calibrated by moment matching. Panel C reports the targeted data

moments and the simulated moments by the model. The �rst two data moments are based on the ABS data (taken from Acemoglu

et al., 2022) and the last two moments are authors' calculations using IFR and NBER-CES data.

automation 𝜎𝑎, the robot input weight 𝛼𝑎, and the elasticity of substitution between robots and labor 𝜂. The calibrated
parameters are shown in Panel B of Table 2.26

We target four moments to jointly calibrate these four parameters. The four moments include (i) the share of
manufacturing firms that use robotics was 8.7% during the period of 2016-2018, according to the 2019 ABS (Acemoglu
et al., 2022); (ii) the employment share of the manufacturing firms that use robotics was 45.1% during the same period,
also according to the 2019 ABS; (iii) the robot density measured by the aggregate operational stock of industrial robots
per thousand manufacturing workers was about 20 in 2016, according to the data from the IFR and NBER-CES; and
(iv) during the period from 2002 to 2016, the robot density increased by 300% while the relative price of robots declined
by 40%.

These four moments in the data help pin down the four parameters in our model. Intuitively, the relative price of
robots 𝑄𝑎 affects the fraction of firms that use the automation technology (i.e., the automation probability), which is
given by ∫𝜙 𝐹 (𝑠∗(𝜙)) 𝑑𝐺(𝜙). The parameter 𝜎𝑎 governs the skewness of the distribution of automation fixed costs,
which in turn determines the skewness of automation decisions across the firm size distribution. Under a smaller 𝜎𝑎,

26While we do not have an additional moment in the manufacturing sector to calibrate the mean of the automation fixed cost distribution, we
examine the robustness of our quantitative results in Appendix D by calibrating this additional parameter to match a data moment in the whole
economy. In particular, we calibrate the mean fixed cost of automation to match the ratio of the robot use rate among firms between the 50th and
75th percentile of the employment distribution (1.7%) to the average robot use rate among all firms in the whole economy (2%), taken from the 2019
ABS documented by Acemoglu et al. (2022). This data moment is available for the whole economy but not for the manufacturing sector. We find
that our main quantitative results are robust to calibrating this additional parameter.

Firooz, Liu, Wang: Preprint submitted to Elsevier Page 15 of 35



Automation and the Rise of Superstar Firms

small firms would be less likely to cover the fixed cost of automation. As a result, the employment-weighted robot
use rate would be larger. Therefore, to calibrate 𝜎𝑎, we target the employment share of firms that use the automation
technology, which in our model equals

∫𝜙 𝐹 (𝑠∗(𝜙))𝑁(𝜙) 𝑑𝐺(𝜙)

∫𝜙𝑁(𝜙) 𝑑𝐺(𝜙)
. (37)

The robot input weight 𝛼𝑎 in the production function of intermediate goods determines the steady-state level of
robot density (i.e., 𝐴∕𝑁), which equals 0.02 in 2016 in our data (or equivalently, 20 robots per thousand workers). The
elasticity of substitution 𝜂 between robot input and labor input determines the changes in robot density in response to
changes in the robot price. We calibrate the elasticity of substitution 𝜂 by matching the cumulative increase of 𝐴∕𝑁
of 300 percent associated with the cumulative decline in 𝑄𝑎 of 40 percent from 2002 to 2016 in our data.

Panel B of Table 2 reports these parameters that we internally calibrated. The calibrated model matches the targeted
data moments exactly, as shown in Panel C of Table 2.27

7. Model implications
We study the quantitative implications of our calibrated model, focusing on the steady state equilibrium. We also

examine the model’s transition dynamics following an exogenous decline in the robot price.

7.1. Firm-level implications in the steady state
Figure 4 shows firms’ decision rules in the steady state as a function of the idiosyncratic productivity level𝜙, in both

the benchmark model with calibrated parameters (black solid line) and a counterfactual scenario with a lower robot
price (red dashed line). The figure shows that the automation probability increases with productivity (top left panel).
Although revenues and fixed costs of automation both scale with productivity, revenues increase with productivity
more than proportionately under our calibration, such that more productive firms are more likely to pay the fixed costs
of operating the automation technology. In addition, firms with sufficiently low productivity do not use robots and
operate the labor-only technology. A decline in the robot price boosts the automation probabilities, with a larger effect
on more productive firms. It also reduces the productivity cutoff for accessing the automation technology.

The figure also shows the decision rules for firms that use robots and those that don’t at each level of productivity.
In the benchmark model, the decision rules are qualitatively similar between the two types of firms. In particular,
higher-productivity firms are larger, with higher employment (𝑁(𝜙)), higher relative output (𝑞(𝜙)), higher markups,
and lower labor shares. Larger firms have lower labor shares for two reasons. First, these firms charge higher markups,
reducing the share of labor compensation in value-added. This force is at play for all firms, regardless of whether they
use robots. Second, larger firms are more likely to automate and, as a result, have lower labor shares. This effect works
only for the firms that operate the automation technology.

The red dashed lines in Figure 4 further show that the impacts of a decline in the robot price on the firms’ decision
rules depend on whether firms use robots. For robot-using firms, a decline in the robot price raises employment, output,
and markup at each level of productivity. A reduction in robot price activates two competing forces on the employment
of the automating firms. On the one hand, robots substitute for workers, reducing employment by automating firms. On
the other hand, however, robots boosts labor productivity, raising labor demand by those firms. Under our calibration,
the latter effect dominates such that automating firms increase employment following a reduction in the robot price.
This result is in line with firm-level evidence documented by Zolas et al. (2020) and Aghion et al. (2021). The labor
shares of automating firms decline despite the increases in their employment, reflecting the substitution of robots for
workers and also the increased markups.

For firms without robots, the decline in the robot price has the opposite effect on their decision rules. In particular, a
decline in𝑄𝑎 reduces employment, output, and markups, and increases the labor share at any given level of productivity.
These changes in the decision rules reflect the reallocation of labor from non-automating firms to automating firms.
As non-automating firms become smaller, their market power declines, resulting in lower markups and higher labor
shares.

27To put the calibrated elasticity 𝜂 into context, we note that Cheng, Drozd, Giri, Taschereau-Dumouchel and Xia (2021) estimate the firm-level
elasticity of substitution between labor and automation capital in China ranging from 3 to 4.5, with their preferred estimate being 3.8. Therefore,
our calibrated elasticity of 𝜂 = 2.03 is conservative relative to their estimates. We show that if we instead use a higher 𝜂 in the range estimated by
Cheng et al. (2021) the quantitative importance of automation in our model would be larger.
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Figure 4: Firms' Decision Rules

Note: This �gure shows �rms' decision rules for the �rms that automate (w/ robots) and those that do not automate (w/o robots).

The solid-black lines are associated with our benchmark calibration, whereas red-dashed lines show the results for a counterfactual in

which robot price 𝑄𝑎 falls by 40%.

7.2. Aggregate implications in steady state
The heterogeneous automation decisions and the consequent between-firm reallocation have important implications

for the steady-state relations between aggregate variables and the robot price, as shown in Figure 5. For illustration,
we consider a wide range of the robot price around the calibrated value of 𝑄𝑎 = 48.90, indicated by the vertical blue
line in the figure.

At a lower robot price, more firms find it profitable to automate, raising the fraction of automating firms. Given
the fixed cost of operating the automation technology, larger firms are more likely to automate and thus they benefit
more from the lower robot price.28 As a result, the product market becomes more concentrated and the share of the top
1% of firms rises. Importantly, the sales share of the top firms rises more than their employment share as 𝑄𝑎 declines,
because those top firms that use robots can expand production without proportional increases in their labor input, and
also because they charge higher markups; while an increase in markups shows up in the sales share of top firms, it is
not reflected in their employment share.

28As discussed before, while automation fixed costs are proportional to firm-level productivity, revenues scale with productivity more than
proportionately under our calibration, such that more productive firms are more likely to automate, as shown in the top-left panel in Figure 4.
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Figure 5: Aggregate Variables in the Steady State

Note: This �gure shows the e�ects of counterfactual changes in the robot price 𝑄𝑎 on the fraction of �rms that automate, the share

of the top 1% of �rms, the labor share, the average markup, the wage rate, and employment in the steady state. The vertical blue

line indicates the calibrated value of robot price 𝑄𝑎.

As 𝑄𝑎 falls, large firms become even larger, raising the average markup in the economy (both sales- and cost-
weighted).29 As Figure 4 shows, a reduction in𝑄𝑎 lowers labor shares in automating firms. It also reallocates production
to automating firms that have on average lower labor shares than non-automating firms. Although labor shares in non-
automating firms rise, the fall in labor shares in automating firms combined with the reallocation toward those firms
contributed to the decline in the labor share in the aggregate economy. Our model thus incorporates the between-firm
reallocation channel for explaining the declines in the aggregate labor share and the increases in the average markup,
in line with the empirical evidence in Autor et al. (2020) and Acemoglu et al. (2020a).

Changes in robot prices affect employment and wages through various channels. A reduction in 𝑄𝑎 tends to
reduce aggregate employment because production is reallocated to automating firms from the labor-intensive non-
automating firms. The decline in 𝑄𝑎 raises equilibrium wages because it improves labor productivity in automating
firms, raising aggregate labor demand and bidding up real wages. When automating firms expand production, however,
they gain market power and their markups rise, thereby mitigating the increase in labor demand and dampening the
increase in wages. The reduction in 𝑄𝑎 also creates a positive wealth effect: by raising consumption, the household is
willing to supply less labor at each given wage level. In equilibrium, small reductions in 𝑄𝑎 have limited effects on
employment and wages, while a large reduction in robot prices leads to an increase in wages and a decline in aggregate
employment.30

29To derive the cost-weighted average markup, we use total variable costs at each firm, as in Edmond et al. (2021).
30Our model’s prediction that a reduction in the robot price raises worker wages seems to be at odds with the empirical evidence documented by

Acemoglu and Restrepo (2021), who find substantial declines in the relative wages of workers specialized in routine tasks in industries experiencing
rapid automation. This is perhaps not surprising because we focus on studying the relation between automation and industry concentration and
abstract from labor market frictions in our model. In a model with elaborated labor market frictions, such as the business cycle model with labor
search frictions and automation studied by Leduc and Liu (2024), an increase in automation threat effectively reduces workers’ bargaining power
in wage negotiations, and it can lower equilibrium wages. Incorporating labor market frictions into our framework is potentially important for
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Automation and industry concentration. The top-middle panel in Figure 5 reports the relations between the robot
price𝑄𝑎 and industry concentration measured by the share of the top 1% of firms in sales (solid line) and in employment
(dashed line). This graph helps us examine the quantitative importance of our automation mechanism in explaining
the rise in sales concentration as well as the divergence between sales and employment concentration. In particular, we
focus on a fall in the robot price from 81.49 to its calibrated value of 48.90, representing a 40% decline that captures
the observed magnitude of changes in the relative price of robots in the data over the period from 2002 to 2016, as
shown in Figure 1.31 We then examine the extent to which the resulting changes in industry concentration in the model
can account for observed changes in the data.

As this figure shows, this decline in𝑄𝑎 leads to the sales share of the top 1% of firms to rise by about 1.48 percentage
points (from 26.24% to 27.72%). The employment share of the top 1% of firms also rises but with a smaller magnitude
(1.02 percentage points). Thus, the gap between sales concentration and employment concentration widens by about
0.46 percentage points.

In the data, as documented by Autor et al. (2020), sales concentration in manufacturing measured by the sales
share of the top four firms (i.e., CR4) rose from about 40.52% in 1997 to 43.32% in 2012, an increase of about three
percentage points, while employment concentration rose from 33.26% to 34.51% during the same period, an increase
of about 1.2 percentage points.32 The gap between sales and employment concentration during this period in the data
therefore widens by about 1.8 percentage points. Our model can explain roughly 49.2% (1.48 out of 3 percentage
points) of the increases in sales concentration as well as about 25.3% (0.46 out of the 1.8 percentage points) of the
observed divergence between sales and employment concentration.

The top-middle panel in Figure 5 also illustrates that the relation between robot prices and industry concentration
can be non-monotonic. If the economy starts with a small share of automating firms in the initial equilibrium, a
reduction in the robot price would increase industry concentration, as we find in the calibrated model here. This is
consistent with the positive correlation between automation and sales concentration in the U.S. that we documented in
Section 3. However, in an economy with widespread automation (i.e., an economy with a sufficiently low level of the
robot price), a further reduction in the robot price may not increase industry concentration as much, and it could even
reduce concentration. As the automation technology becomes accessible to smaller firms, the share of top firms in the
economy falls. These findings suggest that automation is different from general capital equipment. While equipment
is widespread across firms in the economy, automation is highly skewed toward a small fraction of superstar firms.33

7.3. Examining key features of the model
We now examine the importance of variable markups and fixed costs of automation—two important features of our

model—for generating the model’s main predictions. We show that the fixed cost of automation is crucial for generating
the link between automation and industry concentration. However, the Kimball demand system with variable markups
is not essential, although quantitatively helpful, since an alternative setup with a CES demand system and thus constant
markups could generate qualitatively the same predictions, provided that we keep the fixed cost of automation in the
model.

To examine the importance of the fixed cost, we consider a counterfactual economy with the Kimball demand
system but without fixed costs of automation. Figure A.3 in the Appendix shows the steady-state relations between the
robot price and the macroeconomic variables. In an economy with a lower robot price, firms use robots more intensively,
raising labor productivity and the wage rate, while reducing employment and the labor income share, similar to the
predictions of the benchmark model. However, without the fixed cost of automation, all firms would be using robots,
such that changes in the robot price do not affect industry concentration.

To investigate the role of the Kimball demand system with variable markups, we consider a counterfactual model
with a CES demand system, keeping the fixed cost of automation. This counterfactual is a special case of our benchmark

understanding the connection between automation and a broader set of labor market variables (including wages). We leave that important task for
future research.

31The data on robot prices in the U.S. are available only after 2002. To have a comparable period with the concentration measures in Autor et al.
(2020), we assume that the fall in robot prices from 1998 to 2012 is the same as that from 2002 to 2016 (i.e., 40%).

32Notice that, as Figure 1 shows, sales concentration measured by the sales share of the top 20 firms (i.e., CR20) rose by a similar magnitude.
We focus on CR4 since, as mentioned before, this is more comparable to the share of the top 1% firms.

33Although we do not have firm-level data to show that general capital equipment is more evenly distributed across firms relative to robots,
Figure A.2 in the Appendix shows that this is true across industries. For example, in 2018, the distribution of robot density is highly skewed toward
a few industries such as electronics and basic metals. In comparison, capital equipment intensity is more evenly distributed across the same set of
two-digit manufacturing industries.
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model with the super-elasticity of demand set to 𝜖 = 0. We recalibrate the constant demand elasticity 𝜎 to match the
average markup in the benchmark model. We also recalibrate the four parameters 𝑄𝑎, 𝜎𝑎, 𝛼𝑎, and 𝜂 to match the
four moments in the data used for calibrating our benchmark model (see Panel C of Table 2). Table A.4 presents the
calibrated parameters. The calibrated model with the CES demand system matches the four data moments exactly.

Figure A.4 in the Appendix shows the steady-state relations between the robot price and the macroeconomic
variables in the CES model. The CES model generates qualitatively similar features as does the benchmark model,
except that markups are constant by construction. Quantitatively, however, the CES model implies a steeper positive
relation between automation and industry concentration. As shown in Figure A.4, the CES model predicts that a 40%
decline in 𝑄𝑎 leads to the sales share of the top 1% of firms to rise by about 2.85 percentage points (from 33.66%
to 36.51%), explaining about 95% of the observed increases in sales concentration, which seems implausible and is
much larger than that predicted by the benchmark model (about 49%). The CES model also predicts a larger increase in
employment concentration. Regardless of whether markups are constant, the presence of the fixed cost of automation
implies that a decline in the robot price disproportionately benefits large firms that use robots, enabling them to expand
production further, resulting in an increase in sales concentration. Under a Kimball demand system, however, the
expansion of sales of the top firms is accompanied by an increase in their markups and, to maintain higher markups,
the top firms restrain the expansion of production. Under the CES demand system, markup is constant by construction,
such that the same decline in the robot price leads to larger increases in sales concentration.

7.4. Transitional dynamics
Our main analysis focuses on a stationary equilibrium. Since we have a dynamic model, we now solve for the

transition dynamics following a sharp decline in the robot price. We assume that the economy starts from the calibrated
initial steady state in period 𝑡 = 1 and then the robot price declines unexpectedly by 40% in 𝑡 = 2 and stays at that
lower level. The agents have perfect foresight after period 2.34 Figure 6 presents the transition paths for several key
aggregate variables. The figure shows that the transition process in our model is relatively short: The economy reaches
the new steady state in about 40 quarters, with most changes taking place in the first 20 quarters.

The transition paths are mostly smooth, except for the initial responses of the macro variables in the period when
the shock hits (i.e., 𝑡 = 2). The decline in 𝑄𝑎 in 𝑡 = 2 boosts robot investment and aggregate output. Since the
aggregate stock of robots is predetermined, the initial increase in aggregate output is driven by the initial increase in
employment. As output increases, the robot rental rate (which equals the marginal product of robots) rises initially,
raising the marginal cost of production for automating firms. Given the fixed costs of automation, larger and more
productive firms use robots and they face an initial increase in the user cost of robots. The resulting reallocation away
from those firms reduces aggregate productivity, industry concentration, and average markup while raising the labor
share in the period of the shock. In subsequent periods, as new robots come online for production, labor productivity,
concentration, and average markup all rise smoothly and the labor share also falls smoothly until reaching the new
steady state.

7.5. Policy analysis
The source of inefficiencies in the model economy is the size-dependent markups, which in principle can be offset by

size-dependent subsidies to firms. In reality, however, implementing such size-dependent subsidies requires knowledge
about firm-specific markups, which can be challenging. Thus, we follow the literature and examine the effects of a robot
tax on macroeconomic allocations and welfare.35

For this purpose, we introduce a tax 𝜏𝑡 on the value of robots. Absent size-dependent subsidies that offset the
markup distortions, the economy is in a second-best environment, where a robot tax policy can potentially improve
welfare. We assume that the robot tax revenues are rebated to the representative household in the form of lump-sum
transfers. The household budget constraint (5) now becomes

𝐶𝑡 +𝑄𝑎,𝑡[𝐴𝑡+1 − (1 − 𝛿𝑎)𝐴𝑡] ≤ 𝑊𝑡𝑁𝑡 + 𝑟𝑎,𝑡𝐴𝑡 + 𝜋𝑡 − 𝜏𝑡𝑄𝑎,𝑡𝐴𝑡+1 + 𝑇𝑡, (38)

where 𝑇𝑡 denotes the lump-sum transfer and we have substituted out robot investment using the law of motion (6). The
optimizing choice of robot investment implies that

(1 + 𝜏𝑡)𝑄𝑎,𝑡 = 𝜌𝑡,𝑡+1
[

𝑟𝑎,𝑡+1 +𝑄𝑎,𝑡+1(1 − 𝛿𝑎)
]

. (39)
34Appendix C.2 describes the algorithm for solving the transition dynamics under the assumption of perfect foresight, an approach similar to

that in Benguria, Saffie and Urzua (2023).
35See Section 2 for a discussion of the related literature.
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Figure 6: Transition Dynamics: 40% One-Time Decrease in 𝑄𝑎 at 𝑡 = 2

Note: This �gure shows transition paths in response to an unexpected permanent decline in 𝑄𝑎 by 40% at 𝑡 = 2 from the initial

steady state.

To explore the welfare implications of the robot tax policy, we measure welfare losses (or gains) under a robot tax by
the consumption equivalent variation relative to the laissez-faire benchmark. Specifically, we compute the percentage
change in consumption in perpetuity that is required such that the representative household is indifferent between living
in the economy with the robot tax and the benchmark economy without it.

The welfare in the economy with the robot tax rate 𝜏𝑡 (denoted by 𝑊 (𝜏)) is given by

𝑊 (𝜏) =
∞
∑

𝑡=0
𝛽𝑡

[

ln𝐶𝑡(𝜏𝑡) − 𝜒
𝑁𝑡(𝜏𝑡)1+𝜉

1 + 𝜉

]

, (40)

where 𝐶𝑡(𝜏𝑡) and 𝑁𝑡(𝜏𝑡) denote, respectively, consumption and employment in the equilibrium under the tax policy.
The welfare in the benchmark economy without the tax is given by

𝑊 (0) =
∞
∑

𝑡=0
𝛽𝑡

[

ln𝐶𝑡(0) − 𝜒
𝑁𝑡(0)1+𝜉

1 + 𝜉

]

, (41)

where 𝐶𝑡(0) and 𝑁𝑡(0) denote, respectively, consumption and employment in the equilibrium of the benchmark
economy without the tax (i.e., with 𝜏𝑡 = 0 for all 𝑡). The welfare loss associated with the tax rate 𝜏𝑡 is given by
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Figure 7: Steady-State E�ects of Taxing Robots

Note: This �gure shows the e�ects of imposing a tax 𝜏 on the stock value of robots on aggregate variables and welfare in the steady

state. Welfare gains are measured by the consumption equivalent (percent) relative to the laissez-faire economy with 𝜏 = 0.

the consumption equivalent 𝜇, which is defined by the relation
∞
∑

𝑡=0
𝛽𝑡

[

ln𝐶𝑡(0)(1 − 𝜇) − 𝜒
𝑁𝑡(0)1+𝜉

1 + 𝜉

]

= 𝑊 (𝜏), (42)

Solving for 𝜇 from equation (42), we obtain

𝜇 = 1 − exp[(1 − 𝛽)(𝑊 (𝜏) −𝑊 (0))]. (43)

A positive (negative) 𝜇 would imply a welfare loss (gain) in the economy with the robot tax relative to the laissez-faire
benchmark.

7.5.1. Effects of a robot tax in the steady state
Figure 7 shows the steady-state effects of imposing a robot tax. In a steady state, the optimizing condition (39)

implies that the rental rate is given by 𝑟𝑎 = 𝑄𝑎[(1 + 𝜏)∕𝛽 − 1 + 𝛿𝑎], which increases with the robot tax rate. Similar to
a decline in the robot price, a reduction in the robot tax has two competing effects on the market share of the top firms.
On the one hand, it reduces 𝑟𝑎 and thus the cost of operating the automation technology, enabling large and automating
firms to become even larger (the intensive margin). On the other hand, it raises the fraction of firms that automate
(the extensive margin), such that some medium-sized firms that initially used the labor-only technology switch to the
automation technology (the extensive margin), reducing the market share of the top firms. Under our calibration, the
intensive margin effect dominates, such that a lower robot tax (or a higher robot subsidy) raises the sales concentration
and the employment concentration, and it also enlarges the gap between the two measures of concentration because
robots substitute for workers.

Since larger firms have higher markups and are more productive, the between-firm reallocation associated with
a decline in the robot tax raises the average markup and aggregate labor productivity. The rise in labor productivity
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Figure 8: Welfare E�ects of Taxing Robots in the Economy with Transitional Dynamics

Note: This �gure shows the welfare gains associated with di�erent robot tax rates (𝜏), taking into account the transitional dynamics.

Welfare gains are measured by the consumption equivalent (percent) relative to the laissez-faire economy with 𝜏 = 0. The solid line

indicates the welfare e�ects in the benchmark model with the calibrated value of the steady-state robot price 𝑄𝑎. The dashed line

indicates the welfare e�ects in the counterfactual economy with a robot price that is permanently 10% lower.

boosts labor demand, which tends to increase employment. At the same time, however, robots substitute for workers,
reducing aggregate employment. Under our calibration, the net effect of the robot tax on employment is small, unless
the subsidy rate is relatively large.

The presence of market power in our model renders the laissez-faire equilibrium inefficient. In particular, since
firms have monopolistic markups, aggregate output is inefficiently low, such that a robot subsidy can improve welfare
by stimulating robot investment and thereby bringing aggregate output closer to the efficient level. In this sense, a
robot subsidy acts like a production subsidy that helps mitigate, but not completely undo, markup distortions.36 A
robot subsidy stimulates automation investment, resulting in more concentrated production in large firms that have
high productivity and also high markups. By raising aggregate productivity, a robot subsidy can be effective in bringing
aggregate output closer to the efficient level. However, a robot subsidy also raises the average markup, making it harder
to undo markup distortions. With these effects taken into account, a modest robot subsidy is needed to maximize
welfare. As shown in Figure 7, the optimal robot subsidy rate is about 1.42% under our calibration, with a maximum
welfare gain of about 4.23% of steady-state consumption equivalent relative to the laissez-faire benchmark.

7.5.2. Effects of a robot tax with transition dynamics
We now examine the implications of the robot tax policy when transition dynamics are taken into account. We

start from the steady state in the benchmark model without taxes (i.e., period one) and, in period two, we introduce an
unexpected robot tax that remains in place permanently. We solve for the transition dynamics assuming that the agents
have perfect foresight from period two onward.

Figure 8 plots the welfare gains (in consumption equivalent units) as a function of the robot tax rate in the model with
transition dynamics. The figure shows that, similar to the steady-state analysis, the tax policy has a non-monotonic effect
on welfare. Under our benchmark calibration (the black solid line), a permanent robot subsidy of 0.64% maximizes
welfare, with a welfare gain of 0.43% of consumption equivalent relative to the no-tax economy.

36As long as markups are positive, a robot subsidy (or a production subsidy) would help mitigate markup distortions. This implication does not
rely on the Kimball demand system and continues to hold in, for example, an economy with a CES demand system, as shown in Figure A.5 in the
Appendix. In the CES case, the optimal subsidy rate is 1.36%, resulting in consumption-equivalent welfare gains of 3.32%.
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Compared to the steady-state effects of robot taxes shown in Figure 7, the optimal subsidy rate and the maximum
welfare gains are both smaller in the dynamic model. This result reflects that the robot tax policy has different
implications for welfare in the short run versus the long run. Relative to the original steady state with no taxes, imposing
a modest, permanent robot subsidy boosts consumption and improves welfare in the new steady state, as we have
discussed in Section 7.5.1. However, in the transition process, the subsidy stimulates robot investment, crowding out
consumption (see Figure A.6 in the Appendix). The increase in robot investment also boosts labor productivity and
raises labor demand, resulting in an increase in employment in the short run. The transitory declines in consumption
and increases in employment reduce the utility flows for the representative household in the transition process, partly
offsetting the steady-state welfare gains.

Figure 8 also shows the welfare gains under different robot tax rates in a counterfactual dynamic economy with
a robot price that is 10% lower permanently (the dashed line). With a lower robot price, the optimal robot subsidy is
smaller (0.60% vs. 0.64%) and the associated welfare gain is larger (0.50% vs. 0.43%). Thus, when the robot price is
lower, a smaller subsidy is needed to maximize welfare. This is because, with a lower robot price, robot investment is
larger and therefore production is closer to the efficient level, making robot subsidy less crucial.

8. Conclusion
We provide empirical evidence suggesting that automation is associated with the rise in sales concentration

and the divergence between sales and employment concentration in the U.S. manufacturing sector since the early
2000s. We study the economic forces that drive the link between automation and industry concentration using a
general equilibrium framework. The model highlights two important channels—fixed costs of operating the automation
technology and labor-substituting effects of automation—that help explain the empirical relation between automation
and concentration. Our calibrated model predicts that a decline in the robot price of a magnitude similar to that observed
during the past two decades can account for about 49% of the rise in sales concentration and about 25% of the diverging
trends between sales and employment concentration. Thus, the rise of automation is quantitatively important for driving
the rise of superstar firms.

We use our general equilibrium model to evaluate the welfare implications of a robot tax policy. With the markup
distortions, aggregate output is inefficiently low in the laissez-faire equilibrium. A robot subsidy induces reallocation
toward large automating firms that have higher productivity, bringing aggregate output closer to the efficient level.
However, large firms also have high markups, such that a robot subsidy raises the average markup through between-
firm reallocation. Under calibrated parameters, a modest robot subsidy improves steady-state welfare relative to the
laissez-faire benchmark. We further show that the robot tax policy has different welfare implications when the short-run
transition dynamics are taken into account. During the transition process, an increase in robot investment stimulated
by a robot subsidy crowds out consumption, reducing the flow value of the representative household’s utility. Taking
into account the dynamic effects leads to a smaller optimal robot subsidy and also a smaller welfare gain relative to
those in the steady-state analysis. Furthermore, when the robot price is lower, a smaller robot subsidy is required to
maximize welfare.

To highlight the key mechanism that connects automation with industry concentration, we focus on a stylized
model that abstracts from several other mechanisms or sources of friction studied in the literature. For example, our
benchmark model features a representative household with a homogeneous type of labor, and robots can substitute for
workers. In reality, automation equipment substitutes for low-skill workers while complementing high-skill workers
(Krusell, Ohanian, Ríos-Rull and Violante, 2000). In such an environment, a decline in the robot price would stimulate
automation investment, which in turn boosts demand for high-skill labor, raising the skilled wage premium and
also the cost of automation, partly offsetting the initial increase in automation investment (Leduc and Liu, 2024).
Extending our model to incorporate skill heterogeneity is an important direction for future research. In that extended
framework, changes in automation would affect not only the concentration of firms but also the distribution of income
for households. Our framework can also be extended to an open-economy environment, which would allow us to
examine potential interactions between automation, offshoring, and domestic production along the lines of Firooz
et al. (2024). These extensions, in our view, are promising avenues for future research. Our work represents a small
first step toward that direction.
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Table A.1

Industries Included in the Sample

ISIC rev4 IFR

Code Label Code Label

10�12 Manufacture of food products, Manufacture of beverages,
Manufacture of tobacco products

10�12 Food products and beverages;
Tobacco products

13-15 Manufacture of textiles, Manufacture of wearing apparel,
Manufacture of leather and related products

13-15 Textiles, leather, wearing ap-
parel

16,
31

Manufacture of wood and of products of wood and cork,
except furniture; manufacture of articles of straw and
plaiting materials, Manufacture of furniture

16 Wood and wood products (incl.
furniture)

17-18 Manufacture of paper and paper products, Printing and
reproduction of recorded media

17-18 Paper and paper products, pub-
lishing & printing

19-22 Manufacture of coke and re�ned petroleum products,
Manufacture of chemicals and chemical products, Man-
ufacture of basic pharmaceutical products and pharma-
ceutical preparations, Manufacture of rubber and plastics
products

19-22 Plastic and chemical products

23 Manufacture of other non-metallic mineral products 23 Glass, ceramics, stone, mineral
products n.e.c. (without auto-
motive parts)

24 Manufacture of basic metals 24 Basic metals (iron, steel, alu-
minum, copper, chrome)

25 Manufacture of fabricated metal products, except machin-
ery and equipment

25 Metal products (without auto-
motive parts), except machin-
ery and equipment

26-27 Manufacture of computer, electronic and optical products,
Manufacture of electrical equipment

26-27 Electrical/electronics

28 Manufacture of machinery and equipment n.e.c. 28 Industrial Machinery
29 Manufacture of motor vehicles, trailers and semi-trailers 29 automotive
30 Manufacture of other transport equipment 30 Other transport equipment
D, E Electricity, gas, steam and air conditioning supply, Water

supply; sewerage, waste management, and remediation
activities

E Electricity, gas, water supply

Note: This table shows the corresponding ISIC revision 4 and IFR codes and labels for the industries included in our sample.

Table A.2

Summary Statistics

#obs mean min p25 p50 p75 max s.d.

ln(robot/thousand employees) 117 0.48 -6.57 -1.12 1.02 2.32 5.86 2.36
ln(robots/million hours) 117 0.20 -6.83 -1.34 0.79 1.94 5.30 2.43
top 1% share of sales 117 0.31 0.09 0.22 0.30 0.37 0.77 0.13
top 1% share of employment 104 0.27 0.11 0.21 0.28 0.32 0.46 0.08

Note: This table shows the summary statistics of the data we use in the regressions. The industry-level robot density is measured as

the operational stock of industrial robots per thousand employees or per million labor hours. We consider two measures of industry

concentration: the sales share and the employment share of the top 1% of �rms in the industry. For both measures of concentration,

we restrict our sample to industry-year pairs with at least 10 �rms.

Source: Authors' calculations using IFR, Compustat, and NBER-CES.

Appendices
A. Additional tables and figures
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Figure A.1: Industry Concentration and Robot Density (per Million Hours)

Panel A. Sales Concentration Panel B. Employment Concentration

Note: This �gure shows the cumulative changes in sales concentration (Panel A) and employment concentration (Panel B) against
changes in robot density. The industry concentration is measured by the share of the top 1% of �rms within an industry. Robot
density is measured by the operational stock of industrial robots per million hours in each industry. The cumulative change is the
long di�erence between the ending value and the starting value of each variable during the years from 2007 to 2018. Since we have
an unbalanced panel, we use the �rst (last) year with non-missing values as the starting (ending) point for calculating the long
di�erences. The circle size indicates an industry's sales share in the initial year (2007). The line shows the prediction from a linear
regression weighted by industries' initial sales shares. The slope coe�cient for sales concentration (Panel A) is 0.022 with a standard
error of 0.008. The slope coe�cient for employment concentration (Panel B) is −0.0015 with a standard error of 0.010.
Source: IFR, NBER-CES, Compustat, and authors' calculation.

Table A.3

First-Stage of the IV Regressions for Robot Density and Industry Concentration

Second-stage dependent variable: top 1% share of sales top 1% share of emp

First-stage dependent variable: ln( robot

thousand emp
) ln( robot

million hours
) ln( robot

thousand emp
) ln( robot

million hours
)

(1) (2) (3) (4)

EURO5 ln(robot/thousand emp) 1.815 1.404
(1.214) (0.936)

EURO5 ln(robot/million hours) 1.694 1.323
(1.240) (0.904)

Observations 117 117 104 104
Industry FE ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓

First-stage E�ective F-statistic 2.235 1.866 2.251 2.141

Note: This table shows the �rst-stage results of the IV regression from the empirical speci�cation (2). The second-stage dependent

variables are the sales share (�rst two columns) and employment share (last two columns) of the top 1% of �rms. The �rst-stage

dependent variable is the U.S. robot density, measured as the operational stock of industrial robots per thousand workers or million

labor hours within the industry. The IV for the U.S. robot density is the one-year lag of the robot density averaged over �ve European

countries (EURO5). The last row shows the �rst-stage e�ective F-statistic of Montiel Olea and P�ueger (2013). In all regressions,

the industries are weighted by their sales share in the initial year (2007), and the regressions also control for industry and year �xed

e�ects. Standard errors in parentheses are clustered at the industry level. Stars denote the statistical signi�cance: * 𝑝 < 0.10, **
𝑝 < 0.05, *** 𝑝 < 0.01.
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Figure A.2: Distribution of robot density and capital equipment intensity across industries

Panel A. Robot density Panel B. Capital equipment intensity

Note: This �gure shows the distribution of robot density (Panel A) and of capital equipment intensity (Panel B) in the year 2018

across the 12 two-digit manufacturing industries in our sample. Robot density is measured by the operational stock of industrial

robots per thousand workers in an industry. Capital equipment intensity is measured by the ratio of the nominal value of capital

equipment to the nominal value added in an industry.

Source: IFR, NBER-CES, Bureau of Economic Analysis, and authors' calculation.

Figure A.3: Aggregate Variables (no �xed cost of automation)

Note: This �gure shows the steady-state e�ects of changes in the robot price 𝑄𝑎 on the fraction of �rms that automate, the share of

the top 1% of �rms, the labor share, the average markup, the wage rate, and employment in the counterfactual model with no �xed

cost of automation. The vertical blue line indicates the calibrated value of robot price 𝑄𝑎.
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Table A.4

Parameter calibration (CES)

Parameter Notation Value Sources/Matched Moments

Panel A: Parameters calibrated to match external sources

Discount factor 𝛽 0.99 4% annual interest rate
Inverse Frisch elasticity 𝜉 0.5 Rogerson and Wallenius (2009)
Working disutility weight 𝜒 1 Normalization
Robot depreciation rate 𝛿𝑎 0.02 8% annual depreciation rate
Productivity persistence 𝛾 0.95 Khan and Thomas (2008)
Productivity standard dev. 𝜎𝜙 0.1 Bloom et al. (2018)
Demand elasticity parameter 𝜎 7.39 Matching a markup of 1.156 in the benchmark
Super elasticity 𝜖∕𝜎 0 Imposing constant markups

Panel B: Parameters calibrated to match moments in data

Relative price of robots 𝑄𝑎 44.70 Fraction of automating �rms
SD of log automation �xed costs 𝜎𝑎 3.12 Employment share of automating �rms
Robot input weight 𝛼𝑎 0.36 Robot density
Elasticity of substitution 𝜂 2.01 Growth rate of robot density

Note: This table shows the calibrated parameters in the counterfactual model with CES aggregation. Panel A reports the externally

calibrated parameters and their sources. Panel B shows the parameters calibrated by moment matching.

Figure A.4: Aggregate Variables (CES)

Note: This �gure shows the e�ects of changes in the robot price 𝑄𝑎 on the fraction of �rms that automate, the share of the top

1% of �rms, the labor share, the average markup, the wage rate, and employment in the counterfactual model with a CES demand

system. The vertical blue line indicates the calibrated value of robot price 𝑄𝑎.
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Figure A.5: Steady-State E�ects of Taxing Robots (CES)

Note: This �gure shows the e�ects of imposing a tax 𝜏 on the stock value of robots on aggregate variables and welfare in the steady

state in the model with a CES demand system. Welfare gains are measured by the consumption equivalent (percent) relative to the

laissez-faire economy with 𝜏 = 0.

Figure A.6: Transition Paths Under the Optimal Robot Tax

Note: This �gure shows the dynamic e�ects of imposing a permanent robot subsidy of 0.64%, corresponding to the optimal subsidy

rate in the dynamic model under the benchmark calibration.
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B. Derivations
To simplify the intermediate producers’ problem in equation (19), rewire the value function so that 𝑠 is not a state

variable:

𝑉𝑡(𝜙𝑡; 𝑠𝑡) = max
𝑝𝑡,𝑦𝑡,𝑁𝑡,𝐴𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡) − 𝑟𝑎,𝑡𝐴𝑡(𝜙𝑡) − 𝑠𝑡𝜙𝑡1{𝐴𝑡(𝜙𝑡) > 0}

+ 𝜌𝑡,𝑡+1𝐸𝜙𝑡+1|𝜙𝑡 ∫𝑠𝑡+1
𝑉𝑡+1(𝜙𝑡+1; 𝑠𝑡+1)𝑑𝐹 (𝑠𝑡+1)

]

= max

{

max
𝑝𝑡,𝑦𝑡,𝑁𝑡,𝐴𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡) − 𝑟𝑎,𝑡𝐴𝑡(𝜙𝑡) + 𝜌𝑡,𝑡+1𝐸𝜙𝑡+1|𝜙𝑡 ∫𝑠𝑡+1
𝑉𝑡+1(𝜙𝑡+1; 𝑠𝑡+1)𝑑𝐹 (𝑠𝑡+1)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝑉 𝑎

𝑡 (𝜙𝑡)

− 𝑠𝑡𝜙𝑡, max
𝑝𝑡,𝑦𝑡,𝑁𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡) + 𝜌𝑡,𝑡+1𝐸𝜙𝑡+1|𝜙𝑡 ∫𝑠𝑡+1
𝑉𝑡+1(𝜙𝑡+1; 𝑠𝑡+1)𝑑𝐹 (𝑠𝑡+1)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝑉 𝑛

𝑡 (𝜙𝑡)

}

= max{𝑉 𝑎
𝑡 (𝜙𝑡) − 𝑠𝑡𝜙𝑡, 𝑉

𝑛
𝑡 (𝜙𝑡)} (44)

The firm with productivity 𝜙𝑡 chooses 𝐴𝑡(𝜙𝑡) > 0 if and only if 𝑠𝑡 ≤ 𝑠∗𝑡 (𝜙𝑡) ≡
𝑉 𝑎
𝑡 (𝜙𝑡)−𝑉 𝑛

𝑡 (𝜙𝑡)
𝜙𝑡

.
The value of an automating firm can be written as

𝑉 𝑎
𝑡 (𝜙𝑡) = max

𝑝𝑡,𝑦𝑡,𝑁𝑡,𝐴𝑡>0

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡) − 𝑟𝑎,𝑡𝐴𝑡(𝜙𝑡)
]

+ 𝜌𝑡,𝑡+1𝐸𝜙𝑡+1|𝜙𝑡 ∫𝑠𝑡+1
𝑉𝑡+1(𝜙𝑡+1; 𝑠𝑡+1)𝑑𝐹 (𝑠𝑡+1)

(45)

The value of a non-automating firm can be written as

𝑉 𝑛
𝑡 (𝜙𝑡) = max

𝑝𝑡,𝑦𝑡,𝑁𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡)
]

+ 𝜌𝑡,𝑡+1𝐸𝜙𝑡+1|𝜙𝑡 ∫𝑠𝑡+1
𝑉𝑡+1(𝜙𝑡+1; 𝑠𝑡+1)𝑑𝐹 (𝑠𝑡+1) (46)

To compute the automation cutoff 𝑠∗𝑡 (𝜙𝑡), we can write:

𝑠∗𝑡 (𝜙𝑡)𝜙𝑡 =𝑉 𝑎
𝑡 (𝜙𝑡) − 𝑉 𝑛

𝑡 (𝜙𝑡) (47)

= max
𝑝𝑡,𝑦𝑡,𝑁𝑡,𝐴𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡) − 𝑟𝑎,𝑡𝐴𝑡(𝜙𝑡)
]

− max
𝑝𝑡,𝑦𝑡,𝑁𝑡

[

𝑝𝑡(𝜙𝑡)𝑦𝑡(𝜙𝑡) −𝑊𝑡𝑁𝑡(𝜙𝑡)
]

, (48)

which gives Eq. 30 in the text.

C. Solution Algorithm
C.1. Steady state

In the steady state, the rental rate of robots is

𝑟𝑎 = 𝑄𝑎(
1
𝛽
− 1 + 𝛿𝑎). (49)

There are three loops to solve for the steady state. The 𝑌 loop is outside of the 𝑊 loop and the W loop is outside of
the 𝑞 loop.
𝑌 loop: Use bisection to determine the aggregate final goods and other aggregate variables.

1. Guess aggregate final goods 𝑌 .
2. Compute 𝑊 and firms’ relative production 𝑞(𝜙) in the 𝑊 loop as explained below.
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3. Given the equilibrium wage rate, compute other aggregate variables by finding 𝑌 using the bisection method:
(a) Given the solved relative production 𝑞(𝜙), we have 𝑦(𝜙) = 𝑞(𝜙)𝑌 .
(b) Given the robot price 𝑄𝑎 and the wage rate 𝑊 , compute the marginal costs 𝜆𝑛(𝜙) and 𝜆𝑎(𝜙) by eq. (25)

and (27), and we can get 𝐴(𝜙) and 𝑁(𝜙) from eq. (23), (24), and (26).
(c) The aggregate employment and robot stock are determined by eq. (34) and eq. (35).
(d) Consumption 𝐶 is determined by eq. (7).
(e) The steady state aggregate investment in robots 𝐼𝑎 is from (36).
(f) Compute 𝑌 new using the resource constraint (33). Stop if 𝑌 converges.

i. If 𝑌 = 𝑌 new, 𝑌 and all other aggregate variables are found.
ii. If 𝑌 > 𝑌 new, reduce 𝑌 . Go back to Step 1.

iii. If 𝑌 < 𝑌 new, increase 𝑌 . Go back to 1.

𝑊 loop: Use bisection to determine the wage rate.

1. Guess a wage 𝑊 .
2. Compute firms’ relative production 𝑞(𝜙) in the 𝑞 loop as explained below.
3. Check whether the Kimball aggregator (9) holds.

(a) If LHS = RHS, the wage rate is found and jump out of 𝑊 loop to 𝑌 loop.
(b) If LHS > RHS, increase 𝑊 to reduce 𝑞(𝜙) according to eq. (10). Go back to Step 2.
(c) If LHS < RHS, reduce 𝑊 to raise 𝑞(𝜙) according to eq. (10). Go back to Step 2.

𝑞 loop: Find the relative production.

1. Given the prices 𝑄𝑎 and 𝑊 , the marginal cost of production is determined by eq. (25) for the automation
technology and by eq. (27) for the labor-only technology.

2. Guess a demand shifter 𝐷.
3. Use eq. (10) to solve for the relative output 𝑞(𝜙) for each 𝜙, for firms with and without robots.

(a) The right-hand side of (10) is a function of 𝑞(𝜙) by plugging in (14).
(b) The price in the left-hand side is the marginal cost in (25) or (27) times the markup in (16), which is also

a function of 𝑞(𝜙).
(c) Use the bisection method to solve for 𝑞(𝜙) in eq. (10).

4. Compute the automation decisions.
(a) Compute 𝑦(𝜙) = 𝑞(𝜙)𝑌 with and without robots.
(b) Compute the demand for 𝐴(𝜙) and 𝑁(𝜙) with and without robots from eq. (23), (24), and (26).
(c) For each productivity 𝜙, compute the profits with and without robots and thus get the automation cutoffs

𝑠∗(𝜙) according to (30), and thus the automation probability 𝐹 (𝑠∗(𝜙)).
5. Given the automation decisions, compute 𝐷new by (11). Stop if 𝐷 converges. Otherwise, go back to Step 2 and

repeat until 𝐷 converges.
(a) If 𝐷 = 𝐷new, 𝐷 and 𝑞(𝜙) are found and jump out of 𝑞 loop to 𝑊 loop.
(b) If 𝐷 > 𝐷new, reduce 𝐷. Go back to Step 2.
(c) If 𝐷 < 𝐷new, increase 𝐷. Go back to Step 2.

C.2. Transitional dynamics
We assume that the economy is in the steady state at 𝑡 = 1 and 𝑄𝑎 unexpectedly decreases by 40% in period 2 and

remains deterministically constant afterward.
Given an exogenous path of {𝑄𝑎,𝑡}𝑇𝑡=1, we solve the economy’s transition path as follows:

1. Ensure that 𝑇 is sufficiently large so that the economy reaches its new steady state by time 𝑇 . For example, set
𝑇 = 300. The economy begins at its initial steady state at 𝑡 = 1 and reaches the new steady state at 𝑡 = 𝑇 , an
unexpected change in robot prices.

2. Make initial guesses for the sequence of stochastic discount factors (SDFs), the sequence of aggregate output,
and 𝑟𝑎,2. Set {𝜌(𝑖𝑛𝑖𝑡)𝑡,𝑡+1}

𝑇−1
𝑡=2 = 𝛽, {𝑌 (𝑖𝑛𝑖𝑡)

𝑡 }𝑇−1𝑡=2 = 𝑌𝑇 , and 𝑟(𝑖𝑛𝑖𝑡)𝑎,2 in between 𝑟𝑎,1 and 𝑟𝑎,𝑇 .1

1Since aggregate investment depends on the next period’s aggregate robot stock, another variable besides the SDF needs to be guessed. An
alternative approach is to guess the sequence of robot stocks {𝐴(𝑖𝑛𝑖𝑡)

𝑡 }𝑇−1𝑡=2 and solve for 𝑌 , 𝑊 , and 𝑞 loops, as described in the steady state solution
algorithm. In practice, this approach is slower and does not improve convergence.
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3. For each 𝑡 = 2, 3, ..., 𝑇 − 1, given 𝑄𝑎,𝑡−1, 𝑄𝑎,𝑡, 𝑟
(𝑖𝑛𝑖𝑡)
𝑎,2 , 𝜌(𝑖𝑛𝑖𝑡)𝑡−1,𝑡 , and 𝑌 (𝑖𝑛𝑖𝑡)

𝑡 , solve for the equilibrium as follows:
(a) The rental rate of robots for 𝑡 = 3, 4, ..., 𝑇 − 1 is given by

𝑄𝑎,𝑡 = 𝜌(𝑖𝑛𝑖𝑡)𝑡,𝑡+1
[

𝑟𝑎,𝑡+1 +𝑄𝑎,𝑡+1(1 − 𝛿𝑎)
]

.

⇒ 𝑟𝑎,𝑡+1 = 𝑄𝑎,𝑡∕𝜌
(𝑖𝑛𝑖𝑡)
𝑡,𝑡+1 −𝑄𝑎,𝑡+1(1 − 𝛿𝑎).

⇒ 𝑟𝑎,𝑡 = 𝑄𝑎,𝑡−1∕𝜌
(𝑖𝑛𝑖𝑡)
𝑡−1,𝑡 −𝑄𝑎,𝑡(1 − 𝛿𝑎). (50)

(b) Given 𝑟𝑎,𝑡 and 𝑌 (𝑖𝑛𝑖𝑡)
𝑡 , solve the 𝑊 and 𝑞 loops outlined in the steady state solution algorithm. This yields

𝑊 and firms’ relative production 𝑞(𝜙𝑡).
(c) Similar to the 𝑌 loop in the steady state solution algorithm, compute other variables as follows:

i. Given 𝑟𝑎,𝑡 and 𝑊 , compute the marginal costs 𝜆𝑛𝑡 (𝜙𝑡) and 𝜆𝑎𝑡 (𝜙𝑡) given by eq. (25) and (27), and solve
for 𝐴𝑡(𝜙𝑡) and 𝑁𝑡(𝜙𝑡) from eq. (23), (24), and (26).

ii. The aggregate employment and robot stock are determined by eq. (34) and eq. (35).
iii. Aggregate consumption 𝐶𝑡 is determined by eq. (7).

(d) Compute aggregate investment in robots, 𝐼𝑎,𝑡 = 𝐴𝑡+1 − (1 − 𝛿𝑎)𝐴𝑡.
(e) Compute aggregate output for each 𝑡 using the resource constraint (33):

𝑌 (new)
𝑡 = 𝐶𝑡 +𝑄𝑎,𝑡𝐼𝑎,𝑡 + ∫𝜙𝑡

∫

𝑠∗𝑡 (𝜙𝑡)

0
𝑠𝑡𝜙𝑡 𝑑𝐹 (𝑠𝑡) 𝑑𝐺(𝜙𝑡). (51)

(f) Compute stochastic discount factors for each 𝑡: 𝜌(new)
𝑡,𝑡+1 = 𝛽 𝐶𝑡

𝐶𝑡+1
.

(g) Update 𝑟(new)
𝑎,2 = 𝐴2 − 𝐴1. Notice that 𝑟𝑎,2 is not given by equation (50) because the shock at period 2 is

unexpected. Instead, 𝑟𝑎,2 is determined such that robot demand equals the pre-determined robot supply at
period 1, i.e., 𝐴2 = 𝐴1.

4. Continue iterating until the sequences of SDFs, aggregate output, and 𝑟𝑎,2 converge, i.e., dist({𝜌(new)
𝑡,𝑡+1 }

𝑇
𝑡=1, {𝜌

(𝑖𝑛𝑖𝑡)
𝑡,𝑡+1}

𝑇
𝑡=1) <

10−6, dist({𝑌 (new)
𝑡 }𝑇𝑡=1, {𝑌

(𝑖𝑛𝑖𝑡)
𝑡 }𝑇𝑡=1) < 10−6, and |𝑟(new)

𝑎,2 − 𝑟(init)
𝑎,2 | < 10−6. Here, the distance function is defined

as dist(𝑓 (new), 𝑓 (𝑖𝑛𝑖𝑡)) =
(
∑

𝑡(𝑓 (new)(𝑡)−𝑓 (𝑖𝑛𝑖𝑡)(𝑡))2
)1∕2

1+(∑𝑡 𝑓 (𝑖𝑛𝑖𝑡)(𝑡)2)1∕2
, as in Judd (1998). If any of them does not converge, update our

initial guess and start again from Step 3:

𝜌(𝑖𝑛𝑖𝑡)𝑡,𝑡+1 = 𝜂𝜌(𝑖𝑛𝑖𝑡)𝑡,𝑡+1 + (1 − 𝜂)𝜌(new)
𝑡,𝑡+1 ,

𝑌 (𝑖𝑛𝑖𝑡)
𝑡 = 𝜂𝑌 (𝑖𝑛𝑖𝑡)

𝑡 + (1 − 𝜂)𝑌 (new)
𝑡 ,

𝑟(𝑖𝑛𝑖𝑡)𝑎,2 = 𝜂𝑟(𝑖𝑛𝑖𝑡)𝑎,2 + (1 − 𝜂)𝑟(new)
𝑎,2 ,

with 𝜂 = 0.99.

D. Calibrating the mean fixed cost of automation
In our benchmark calibration, we assume that the log fixed costs of automation have a mean of zero because we do

not have an additional data moment in the manufacturing sector to calibrate this parameter. To examine the robustness
of our results, we now calibrate the mean of the log-normal distribution of the fixed costs (denoted by 𝜇𝑎) by targeting
a data moment in the whole economy. The moment that we target is the ratio of the robot use rate among firms between
the 50th and 75th percentile of the employment distribution (1.7%) to the average robot use rate among all firms in the
whole economy (2%), taken from the 2019 ABS documented by Acemoglu et al. (2022). This moment ( 1.72 = 0.85)
also captures the skewness of using robotics across U.S. firms.2

2This moment is only available for the whole economy and not for the manufacturing sector. Hence, we report these results here as a robustness
check.
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Table D.1

Parameters (calibrating the mean �xed cost of automation)

Parameter Notation Value Matched Moments

Relative price of robots 𝑄𝑎 46.47 Fraction of automating �rms
Mean of log automation �xed costs 𝜇𝑎 −0.32 Skewness of robot use rate
SD of log automation �xed costs 𝜎𝑎 3.09 Employment share of automating �rms
Robot input weight 𝛼𝑎 0.34 Robot density
Elasticity of substitution 𝜂 2.03 Growth rate of robot density

Note: This table shows the calibrated parameters by moment matching. Compared to the benchmark model, we calibrate an additional

parameter, which is the mean of the log-normal distribution of the �xed cost of automation (𝜇𝑎) by matching the skewness of robot

use rate measured by the ratio of the robot use rate among �rms between the 50th and the 75th percentile of the employment

distribution to the average robot use rate among all �rms in the whole economy in the ABS data documented by Acemoglu et al.

(2022).

Table D.2

Matched Moments (calibrating the mean �xed cost of automation)

Moments Data Model

Fraction of automating �rms 8.7% 8.7%
Skewness of robot use rate 0.85 0.85
Employment share of automating �rms 45.1% 45.1%
Robot density 0.02 0.02
Growth rate of robot density 300% 300%

Note: This table shows the targeted data moments and the simulated moments by the model. The �rst three data moments are based

on the ABS data (taken from Acemoglu et al., 2022), and the last two moments are authors' calculations using IFR and NBER-CES

data. The skewness of robot use rate is measured by the ratio of the robot use rate among �rms between the 50th and the 75th

percentile of the employment distribution to the average robot use rate among all �rms in the whole economy in the ABS data

documented by Acemoglu et al. (2022).

Table D.1 presents the calibrated parameters. Table D.2 shows that the calibrated model exactly matches all the five
moments in the data. In this calibrated model, as shown in Figure D.1, the predicted steady-state relations between the
robot price and the macroeconomic variables are qualitatively similar to those in the benchmark model. Quantitatively,
a 40% decline in the robot price raises the sales share of the top 1% of firms by about 1.23 percentage points (from
26% to 27.23%) and the employment share of the top 1% of firms by about 0.9 percentage points. Therefore, this model
predicts that the decline in the robot price explains about 41% of the observed increases in sales concentration (1.23
out of 3 percentage points) and about 18% of the divergence between sales and employment concentration (0.32 out
of the 1.8 percentage points). These magnitudes of the contributions from automation to industry concentration are
slightly smaller than, but comparable to, those in the benchmark model. Thus, our main results are robust to calibrating
the mean fixed cost of automation.
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Figure D.1: Aggregate Variables (calibrated mean �xed cost of automation)

Note: This �gure shows the e�ects of changes in the robot price 𝑄𝑎 on the fraction of �rms that automate, the share of the top 1%

of �rms, the labor share, the average markup, the wage rate, and employment in the model with a calibrated value of the mean �xed

cost of automation. The vertical blue line indicates the calibrated value of robot price 𝑄𝑎.


